标题: 从LLMChain迁移到LCEL:提升LangChain应用的效率与灵活性
内容:
从LLMChain迁移到LCEL:提升LangChain应用的效率与灵活性
引言
LangChain是一个强大的框架,用于构建基于大语言模型(LLM)的应用。随着LangChain的不断发展,新的组件和模式被引入以提高开发效率和应用灵活性。本文将探讨从传统的LLMChain迁移到新的LangChain Expression Language (LCEL)的过程,解释这一迁移的优势,并提供实际的代码示例。
LLMChain vs LCEL
LLMChain的局限性
LLMChain是LangChain中一个常用的组件,它将提示模板、LLM和输出解析器组合成一个类。虽然LLMChain功能强大,但它也有一些局限性:
- 配置不够透明:LLMChain包含默认的输出解析器和其他选项,这些可能不总是显而易见的。
- 流式处理支持有限:LLMChain只能通过回调支持流式处理。
- 访问原始消息输出较困难:只能通过参数或回调来访问LLM的原始输出。
LCEL的优势
LCEL (LangChain Expression Language)是一种新的实现方式,它提供了以下优势:
- 更清晰的组件结构和参数:每个组件的功能和参数都更加明确。
- 更容易实现流式处理:LCEL原生支持流式处理,无需依赖回调。
- 更容易访问原始输出:可以直接访问LLM的原始输出,无需额外配置。
- 更高的灵活性:可以轻松组合和重用不同的组件。
从LLMChain迁移到LCEL
让我们通过一个实际的例子来看看如何从LLMChain迁移到LCEL。
使用LLMChain的传统方法
首先,让我们看看使用LLMChain的传统方法:
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[("user", "Tell me a {adjective} joke")],
)</