引言
在现代数据驱动的世界中,AI和机器学习的应用变得越来越重要。为了帮助开发者更轻松地部署和管理这些模型,Databricks提供了一个统一的平台,称为Databricks Lakehouse平台。本文将介绍如何使用ChatDatabricks类与Databricks Model Serving集成,从而在您的LangChain应用中实现强大的聊天功能。
主要内容
1. 什么是ChatDatabricks?
ChatDatabricks类是一个用于包装托管在Databricks Model Serving上的聊天模型端点的工具。它允许开发者轻松地将这些模型集成到应用程序中,支持异步API调用和令牌级别的流式处理,适合各种类型的应用场景。
2. 模型端点要求
使用ChatDatabricks要求服务端点支持OpenAI兼容的聊天输入/输出格式。这包括Databricks提供的基础模型、自定义部署的模型,以及外部托管的模型。
3. 设置和安装
要开始使用ChatDatabricks,您需要有一个Databricks帐户,并设置必要的证书和环境变量。以下是快速安装指南:
%pip install -qU langchain-community mlflow>=2.9.0