搭建你的AI助手:使用ChatDatabricks与Databricks Model Serving集成指南

引言

在现代数据驱动的世界中,AI和机器学习的应用变得越来越重要。为了帮助开发者更轻松地部署和管理这些模型,Databricks提供了一个统一的平台,称为Databricks Lakehouse平台。本文将介绍如何使用ChatDatabricks类与Databricks Model Serving集成,从而在您的LangChain应用中实现强大的聊天功能。

主要内容

1. 什么是ChatDatabricks?

ChatDatabricks类是一个用于包装托管在Databricks Model Serving上的聊天模型端点的工具。它允许开发者轻松地将这些模型集成到应用程序中,支持异步API调用和令牌级别的流式处理,适合各种类型的应用场景。

2. 模型端点要求

使用ChatDatabricks要求服务端点支持OpenAI兼容的聊天输入/输出格式。这包括Databricks提供的基础模型、自定义部署的模型,以及外部托管的模型。

3. 设置和安装

要开始使用ChatDatabricks,您需要有一个Databricks帐户,并设置必要的证书和环境变量。以下是快速安装指南:

%pip install -qU langchain-community mlflow>=2.9.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值