本地运行开源大语言模型的利器——ChatOllama

随着开源大型语言模型的不断发展,如何在本地高效地运行这些模型成为了开发者们关注的焦点。Ollama便是为此而生,它支持在本地运行开源模型如Llama 2。通过本文,你将了解如何安装、配置和使用这个强大的工具,并结合代码实例来展示其强大功能。

技术背景介绍

Ollama的核心功能在于将模型的权重、配置和数据打包到一个Modelfile中,使得模型的部署和管理更加便捷。它充分优化了GPU的使用,并支持本地调用,极大地降低了模型应用的门槛。

核心原理解析

Ollama通过一个集成的环境,将模型的各个必要组件组合到一起,开发者只需通过简单的命令即可下载和加载模型。同时,Ollama与LangChain库无缝集成,使得在Python项目中调用模型变得非常简单。

代码实现演示

以下代码展示了如何使用Ollama加载和调用本地模型。我们将以bakllava模型为例,展示如何处理多模态输入(包括文本和图像)。

from langchain_core.messages import HumanMessage
from langchain_ollama import ChatOllama

# 使用bakllava模型
llm = ChatOllama(model="bakllava", temperature=0)

def prompt_func(data):
    text = data["text"]
    image = data["image"]

    image_part = {
        "type": "image_url",
        "image_url": f"data:image/jpeg;base64,{image}",
    }

    content_parts = []

    text_part = {"type": "text", "text": text}

    content_parts.append(image_part)
    content_parts.append(text_part)

    return [HumanMessage(content=content_parts)]

from langchain_core.output_parsers import StrOutputParser

# 链式调用模型并解析输出
chain = prompt_func | llm | StrOutputParser()
query_chain = chain.invoke(
    {"text": "What is the Dollar-based gross retention rate?", "image": image_b64}
)

print(query_chain)

该代码通过链式调用处理了文本和图像输入,并输出模型的回答结果。

应用场景分析

Ollama的应用场景非常广泛,适用于各类需要本地运行模型的应用,包括但不限于:个性化聊天机器人、文本生成工具、翻译应用等。在数据安全和隐私要求较高的场景下,Ollama的本地运行特性提供了额外的保障。

实践建议

  1. 模型选择与调优:选择适合任务需求的模型,并调整参数以优化性能。
  2. 环境配置:确保您的开发环境有足够的计算资源(如GPU),以支持模型的高效运行。
  3. 代码管理:保留历史版本的Modelfile,以便快速回滚和切换模型。

结束语:如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值