Identity-enabled Retrieval Augmented Generation (RAG) with PebbloRetrievalQA

# 使用Slack导出数据加载LangChain聊天消息

在本篇文章中,我们将展示如何使用Slack聊天加载器将导出的Slack对话映射到LangChain聊天消息中。这个过程分为三个步骤:

1. **创建消息导出**  
目前(截至2023/08/23),此加载器最有效支持通过Slack导出生成的文件格式。请按照Slack提供的最新说明导出你需要的对话线程。LangChain库中也有示例。

```python
import requests

# 从示例链接下载Slack消息导出
permalink = "https://raw.githubusercontent.com/langchain-ai/langchain/342087bdfa3ac31d622385d0f2d09cf5e06c8db3/libs/langchain/tests/integration_tests/examples/slack_export.zip"
response = requests.get(permalink)
with open("slack_dump.zip", "wb") as f:
    f.write(response.content)
  1. 创建聊天加载器
    提供加载器路径,指向ZIP目录。你可以选择指定映射到AI消息的用户ID,以及配置是否合并消息运行。
from langchain_community.chat_loaders.slack import SlackChatLoader

# Slack聊天加载器实例化
loader = SlackChatLoader(
    path="slack_dump.zip",
)

# API参考: SlackChatLoader
  1. 加载消息
    load()lazy_load()方法会返回一个"ChatSessions"列表,这其中包含每个已加载对话的消息列表。
from typing import List

from langchain_community.chat_loaders.utils import (
    map_ai_messages,
    merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession

# 加载原始消息
raw_messages = loader.lazy_load()
# 合并同一发送者的连续消息
merged_messages = merge_chat_runs(raw_messages)
# 将特定发送者的消息转为AI消息
messages: List[ChatSession] = list(
    map_ai_messages(merged_messages, sender="U0500003428")
)

# API参考: map_ai_messages | merge_chat_runs | ChatSession

后续步骤

你可以根据需要使用这些消息进行模型微调、选择少样本示例,或者直接预测下一条消息。

from langchain_openai import ChatOpenAI

# 使用OpenAI的语言模型进行预测
llm = ChatOpenAI()

for chunk in llm.stream(messages[1]["messages"]):
    print(chunk.content, end="", flush=True)

# API参考: ChatOpenAI

在这里,我们完成了从Slack导出的消息到LangChain聊天消息的转换,并展示了如何利用这些消息进行进一步的处理。

如果遇到问题欢迎在评论区交流。

---END---
### Retrieval-Augmented Generation (RAG) 介绍 检索增强生成(Retrieval-Augmented Generation, RAG)是一种用于优化大型语言模型输出的技术,使这些模型可以在生成响应前引用其训练数据源之外的权威知识库[^2]。 #### 原理 RAG 的核心原理是在生成文本的过程中引入外部信息。具体来说,在接收到一个问题或提示时,系统首先评估是否有必要执行检索操作。如果有,则会从预先定义的知识库中查找多个相关的文档片段。随后,这些文档被用来辅助生成更精确、更有依据的回答。此过程不仅限于简单的拼接已有的文字;相反,它涉及复杂的自然语言理解和生成机制,确保最终产出既忠实于原始资料又流畅自然[^3]。 #### 实现方式 实现 RAG 主要分为几个阶段: - **预处理**:准备高质量的知识库供后续检索使用。 - **检索模块**:当接收输入后,决定是否启动检索流程,并挑选出若干候选文件片断。 - **多文档理解与摘要提取**:并发解析所选中的各个文档部分,提炼有用信息。 - **排序选择最佳回应**:综合考虑上下文连贯性和准确性等因素,选出最适合的答案返回给用户。 此外,还有一种变体称为KG-RAG,即结合了知识图谱技术的版本,进一步增强了系统的语义理解和关联发现能力。 #### 应用场景 得益于能动态访问最新资讯的特点,RAG 特别适合应用于那些需要持续更新专业知识域的应用场合,比如医疗咨询、法律服务等领域。同时,在教育辅导方面也展现出巨大潜力——可以即时获取教科书级解释说明,帮助学习者更好地掌握知识点[^4]。 ```python def rag_process(query): """ 模拟一个简化版的RAG工作流 参数: query (str): 用户提出的查询请求 返回: str: 经过RAG处理后的回答 """ # 判断是否需要检索 need_retrieve = decide_if_need_retrieval(query) if not need_retrieve: return generate_answer_directly(query) documents = retrieve_documents(query) processed_docs = parallel_process(documents) best_response = select_best_response(processed_docs, query) return best_response def decide_if_need_retrieval(query): """模拟决策逻辑""" pass def retrieve_documents(query): """模拟文档检索功能""" pass def parallel_process(documents): """并行处理多个文档""" pass def select_best_response(candidates, original_query): """基于一定标准筛选最优答案""" pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值