文章目录
📌 摘要
本文详细介绍了如何部署和运行一个基于 OpenPose 的在线实时动作识别系统。涵盖:
- Python 环境搭建(conda + TensorFlow + Keras)
- OpenPose 预训练模型下载与配置
- 视频姿态估计与数据采集
- 数据预处理与训练流程
适用于人体动作识别、行为分析、视频监控等方向的研究或开发工作,是一篇面向初学者的完整实践指南。
📘 前言
随着计算机视觉的发展,基于姿态估计的动作识别技术越来越受到关注。OpenPose 是 CMU 开发的一个开源项目,能够实时检测人体 2D 关键点,非常适合用于动作识别任务。
本文介绍的是一个基于 OpenPose 的在线实时动作识别系统的使用教程,包括从环境搭建到训练模型的全过程,适合有一定 Python 和深度学习基础的新手入门。
一、环境配置
✅ 1. 创建 Conda 虚拟环境
推荐使用 Anaconda 来管理 Python 环境,避免版本冲突:
conda create -n py36OpenPose python=3.6
conda activate py36OpenPose
⚠️ 注意:该项目对 Python 版本要求较严格,请务必使用
python=3.6
。
✅ 2. 安装所需依赖库
依次执行以下命令安装相关模块:
conda install tensorflow-gpu=1.13
pip install opencv-python==3.4.2.17
pip install keras==2.2.4
pip install scikit-learn==0.19
pip install pandas
pip install matplotlib
💡 如果你在安装过程中遇到版本不兼容问题,可以尝试使用虚拟环境隔离不同项目。
二、下载并配置 OpenPose 预训练模型
✅ 1. 下载预训练模型
前往以下链接下载 OpenPose 的预训练模型文件:
🔗 http://www.mediafire.com/file/qlzzr20mpocnpa3/graph_opt.pb
⚠️ 注意:请确保下载的是
graph_opt.pb
文件,这是 OpenPose 的图模型文件。
✅ 2. 放置模型文件
将下载好的 graph_opt.pb
文件放入以下目录中:
\Pose\graph_models\VGG_origin\
✅ 如果路径不存在,请手动创建对应目录结构。
三、测试与数据采集
✅ 1. 准备测试视频
将你想要进行姿态估计的视频文件(如 1.mp4
)放到项目的根目录下。
✅ 2. 运行视频姿态估计
在激活虚拟环境后,执行以下命令开始测试:
python main.py --video=1.mp4
✅ 程序会调用 OpenPose 对视频逐帧进行关键点检测,并显示可视化结果。
✅ 3. 收集关键点数据
默认情况下,程序不会自动保存关键点数据。你需要打开 main.py
文件,找到如下注释代码并取消注释:
# f = open("output.txt", "w")
# f.write(str(keypoints))
# f.close()
保存修改后,再次运行测试命令:
python main.py --video=1.mp4
✅ 此时会在当前目录生成一个包含关键点坐标的
output.txt
文本文件。
四、数据处理与模型训练
✅ 1. 数据格式转换
使用 Excel 打开 output.txt
文件,将其另存为 .csv
格式,并命名为类似 action_data.csv
。
将该文件移动到以下训练目录中:
\Action\training\
✅ 建议每个动作类别单独建立一个 CSV 文件,方便后续分类训练。
✅ 2. 修改训练脚本参数
打开以下训练脚本:
\Action\training\train.py
根据你的数据情况,修改以下两处关键参数:
num_classes = 5 # 动作类别数量
input_length = 30 # 每个动作序列采样帧数
✅ 具体数值取决于你的动作种类和数据长度,请根据实际需求调整。
✅ 3. 启动训练
确认所有配置无误后,在命令行中执行训练脚本:
python train.py
训练完成后,模型权重会自动保存在指定目录中,可用于后续推理和部署。
✅ 总结
本文提供了一份完整的 基于 OpenPose 的在线实时动作识别系统的使用教程,涵盖了以下关键步骤:
步骤 | 内容 |
---|---|
环境搭建 | 使用 Anaconda 创建虚拟环境,安装 TensorFlow、Keras、OpenCV 等依赖 |
模型配置 | 下载并放置 OpenPose 预训练模型 |
视频测试 | 使用 main.py 对视频进行姿态估计 |
数据采集 | 提取关键点坐标并保存为 txt 文件 |
数据处理 | 将 txt 文件转为 csv 格式,准备训练数据 |
模型训练 | 修改训练参数,运行 train.py 训练动作分类模型 |
通过这套流程,你可以快速实现一个基于姿态估计的动作识别系统,适用于体育运动分析、智能安防、人机交互等多个领域。
📌 如果你觉得这篇文章对你有帮助,请点赞 + 收藏 + 分享,让更多人了解如何使用 OpenPose 实现动作识别!
💬 欢迎留言交流你在使用过程中遇到的问题,如模型加载失败、关键点提取异常、训练中断等,我们一起讨论解决。