python n维向量向任意方向旋转,求旋转矩阵

本文介绍了如何在n维空间中通过连续旋转将向量转换到任意方向,并详细阐述了旋转矩阵的构建过程,包括通过多次局部平面旋转累积全局旋转,以及如何计算逆矩阵。同时,展示了如何在不同坐标系间转换旋转矩阵,以及在正交空间采样的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本来想做绕轴旋转,绕轴旋转是在垂直于轴向量的空间里旋转,但是n维空间里与某个向量垂直的空间为n-1维,而旋转只在二维空间里有定义。所以这里就改成了,向任意方向旋转。

计算单位向量 X = ( x 1 , x 2 , ⋯   , x n ) X=(x_1,x_2,\cdots,x_n) X=(x1,x2,,xn)旋转到单位向量 V = ( v 1 , v 2 , ⋯   , v n ) V=(v_1,v_2,\cdots,v_n) V=(v1,v2,,vn)的旋转矩阵 R R R

旋转坐标系

任意的旋转都可以看作绕着一个轴,在某个平面上的旋转。
不失一般性,假定向量 V = ( v 1 , v 2 , ⋯   , v n ) V=(v_1,v_2,\cdots,v_n) V=(v1,v2,,vn) v 1 × v 2 v_1\times v_2 v1×v2张成的平面上旋转,用矩阵乘法可表示为: V ′ = R 1 V V'=R_1V V=R1V其中旋转矩阵 R 1 R_1 R1定义为
R 1 = ( cos ⁡ α − sin ⁡ α sin ⁡ α cos ⁡ α 1 ⋱ 1 ) R_1=\left( \begin{array}{ccc} \cos\alpha& -\sin\alpha& & & \\ \sin\alpha& \cos\alpha& & & \\ & &1 & & \\ & & & \ddots & \\ & & & & 1 \\ \end{array} \right) R1=cosαsinα

### Python 实现向量的平移及旋转矩阵的应用 #### 使用 NumPy 进行向量平移操作 为了实现向量的平移,在三维空间中可以通过简单地将一个向量加到另一个向量上来完成。这里给出一段简单的代码来展示如何利用 `NumPy` 来执行这样的操作。 ```python import numpy as np def translate_vector(vector, translation): """ 对输入vector进行translation指定方向和平移距离的操作. 参数: vector : array_like 需要被移动的原始向量. translation : array_like 表示沿各轴平移的距离. 返回: translated_vector : ndarray 经过平移后的新的位置向量. """ # 将输入转换成numpy数组并计算新坐标 v = np.array(vector) t = np.array(translation) translated_vector = v + t return translated_vector # 测试函数 original_point = [0, 0, 0] move_by = [1, 2, 3] translated_point = translate_vector(original_point, move_by) print(f"Original point: {original_point}") print(f"After translating by [{', '.join(map(str, move_by))}]:\n{translated_point}") ``` 这段程序定义了一个名为 `translate_vector()` 的函数,它接受两个参数——一个是待平移的对象(即原点),另一个是指定平移的方向和大小。最后打印出了经过平移之后的新坐标[^4]。 #### 创建与应用旋转矩阵 对于创建旋转矩阵而言,可以基于罗德里格斯公式(Rodrigues' formula),这允许从旋转向量构建对应的旋转矩阵。下面展示了具体的实现过程: ```python from scipy.spatial.transform import Rotation as R def rodrigues_to_rotation_matrix(rvec): """ Convert a rotation given as a Rodrigues vector to matrix form using SciPy's spatial transform module. Args: rvec (array-like): A 3-element array representing the axis-angle representation of rotation. Returns: rot_mat (ndarray): The corresponding 3x3 rotation matrix. """ rotation = R.from_rotvec(rvec) rot_mat = rotation.as_matrix() return rot_mat if __name__ == "__main__": # Example usage angle_degrees = 90 axis_of_rotation = np.array([0., 0., 1.]) # Rotate around Z-axis radians = np.radians(angle_degrees) rod_vec = axis_of_rotation * radians result_matrix = rodrigues_to_rotation_matrix(rod_vec) print("Rotation Matrix:\n", result_matrix) ``` 上述脚本首先导入必要的库,接着定义了 `rodrigues_to_rotation_matrix()` 函数用来接收一个罗德里格斯形式的角度矢量作为输入,并返回相应的旋转矩阵。在主程序部分,则提供了一组测试数据用于验证功能是否正常工作[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值