文章目录
典型的 CNN 由3个部分构成:
- 卷积层:卷积层负责提取图像中的局部特征;
- 池化层:池化层用来大幅降低参数量级(降维);
- 全连接层:全连接层类似传统神经网络的部分,用来输出想要的结果。
1、卷积层
卷积层的作用:
- 提取图像的特征,并且卷积核的权重是可以学习的,卷积操作能突破传统滤波器的限制,根据目标函数提取出想要的特征;
- 参数共享(一个卷积核用来滤整个图像,而不是很多个卷积核),降低了网络参数,提升训练效率。
为什么卷积能够提取图像特征?
-
假设现在有一张图片,我们需要识别老鼠屁股上的这一片区域。
-
绿框内的图像值可能是这样的(当然,这并不是真正的灰度值)
-
而卷积核,本质上其实就是一个滤波器,可以看作是一个滤波器模板。在上图中,老鼠尾巴,就是我们要提取的特征,为了提取它,我们可以设置卷积核为下图: