【AI】CNN 卷积神经网络 及图像识别举例

本文详细介绍了CNN的三个核心组成部分:卷积层、池化层和全连接层。卷积层通过参数共享的卷积核提取图像特征;池化层降低数据维度,减少计算量并避免过拟合;全连接层整合特征,进行最终的分类决策。通过实例解释了卷积和全连接层的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

典型的 CNN 由3个部分构成:

  1. 卷积层:卷积层负责提取图像中的局部特征;
  2. 池化层:池化层用来大幅降低参数量级(降维);
  3. 全连接层:全连接层类似传统神经网络的部分,用来输出想要的结果。

1、卷积层

在这里插入图片描述

卷积层的作用:

  1. 提取图像的特征,并且卷积核的权重是可以学习的,卷积操作能突破传统滤波器的限制,根据目标函数提取出想要的特征;
  2. 参数共享(一个卷积核用来滤整个图像,而不是很多个卷积核),降低了网络参数,提升训练效率。

为什么卷积能够提取图像特征?

  • 假设现在有一张图片,我们需要识别老鼠屁股上的这一片区域。在这里插入图片描述

  • 绿框内的图像值可能是这样的(当然,这并不是真正的灰度值)
    在这里插入图片描述

  • 而卷积核,本质上其实就是一个滤波器,可以看作是一个滤波器模板。在上图中,老鼠尾巴,就是我们要提取的特征,为了提取它,我们可以设置卷积核为下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值