采样、卷积与离散傅里叶变换
0. 前言
采样 (Sampling
) 是用于选择/丢弃图像像素的空间操作,通常用于增加/减小图像大小;而卷积是一种局部数学运算,通过将像素及其相邻像素的强度值乘以卷积核(通常是一个尺寸较小的窗口矩阵)实现;使用不同核执行图像卷积会在输出图像中产生不同的效果(例如,模糊、锐化、边缘提取等)。离散傅里叶变换 (Discrete Fourier Transform
, DFT
) 的基本思想是将图像视为二维函数,该函数可以表示为二维正弦和余弦(傅里叶基/系数)的加权和。DFT
可以用于将图像从空域变换到频域,因为卷积等操作在频域中可以更快地执行。在本节中,我们将使用常用 Python
库利用采样、卷积和 DFT
定理解决图像处理问题。
1. 图像傅里叶变换
在本节中,我们将介绍离散傅里叶变换 (Discrete Fourier Transform
, DFT
) 相关基础概念,并使用 Numpy
的 fft
模块在图像中应用 DFT
,也可以使用 Scipy
的 fftpack
模块实现 DFT
。
1.1 傅里叶变换基础
我们首先介绍 2D
傅里叶变换及