Python图像处理【7】采样、卷积与离散傅里叶变换

本文深入探讨Python图像处理,介绍傅里叶变换基础、上采样与下采样原理,以及如何利用离散傅里叶变换和低通滤波器改变图像分辨率,同时讲解了抗锯齿下采样的实现,重点阐述了在频域中执行图像处理的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

采样 (Sampling) 是用于选择/丢弃图像像素的空间操作,通常用于增加/减小图像大小;而卷积是一种局部数学运算,通过将像素及其相邻像素的强度值乘以卷积核(通常是一个尺寸较小的窗口矩阵)实现;使用不同核执行图像卷积会在输出图像中产生不同的效果(例如,模糊、锐化、边缘提取等)。离散傅里叶变换 (Discrete Fourier Transform, DFT) 的基本思想是将图像视为二维函数,该函数可以表示为二维正弦和余弦(傅里叶基/系数)的加权和。DFT 可以用于将图像从空域变换到频域,因为卷积等操作在频域中可以更快地执行。在本节中,我们将使用常用 Python 库利用采样、卷积和 DFT 定理解决图像处理问题。

1. 图像傅里叶变换

在本节中,我们将介绍离散傅里叶变换 (Discrete Fourier Transform, DFT) 相关基础概念,并使用 Numpyfft 模块在图像中应用 DFT,也可以使用 Scipyfftpack 模块实现 DFT

1.1 傅里叶变换基础

我们首先介绍 2D 傅里叶变换及

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI technophile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值