归纳关系预测 inductive relation prediction
只记录20年开始的论文,早期的RuleN之类的论文不提
归纳推理:从知识图谱中自动归纳出逻辑规则进行缺失关系预测
文章目录
- 归纳关系预测 inductive relation prediction
- 一、Inductive Relation Prediction by Subgraph Reasoning
- 二、Communicative Message Passing for Inductive Relation Reasoning
- 三、INDIGO: GNN-Based Inductive Knowledge Graph Completion Using Pair-Wise Encoding
- 四、Topology-Aware Correlations Between Relations for Inductive Link Prediction in Knowledge Graphs
- 五、Inductive Relation Prediction by BERT
- 六、Cycle Representation Learning for Inductive Relation Prediction
- 七、Incorporating Context Graph with Logical Reasoning for Inductive Relation Prediction
- 八、Contextual relation embedding and interpretable triplet capsule for inductive relation prediction
一、Inductive Relation Prediction by Subgraph Reasoning
ICML,2020
基本思想:设要输入的三元组为 其中,u、v为目标节点,rt为目标关系。首先是子图提取,在整张图中获得u、v节点的k跳邻居集合
,取其并集并去掉孤立的节点和目标节点之间长度超过k的路径(剪枝)得到其封闭子图,如上图2所示(图1未进行剪枝);
然后构建这个子图中节点的向量表征,对节点i的表征为(d(i,u),d(i,v)),其中d(i,u)为表示节点i和u之间的最短路径,节点u、v分别表示为(0,1)、(1,0),然后使用onehot表示进行拼接得到节点最终表示向量;
将节点信息和封闭子图信息输入到GNN中进行计算,第k层的计算过程如下:
计算边r的注意力权重
这里
和
是边r所对应的头尾实体在k-1层的表征向量,
即前面拼接所得节点向量,
是学到的关系注意力embedding
然后进行信息聚合:
其中,
是节点t的出边指向的节点集合
聚合节点信息:
第L层的整张封闭子图信息:
最后经过一个线性层进行打分:
特点:没有用到节点信息,从图中提取出规则信息,这样可以使模型处理在训练节点没有出现过的实体
二、Communicative Message Passing for Inductive Relation Reasoning
注:为什么要引入有向的封闭子图,原先无向的封闭子图有什么问题?无向的封闭子图无法处理对称关系的情况,对于三元组(h,r,t)和(t,r,h)它们会有相同的子图,但是这两个三元组只有一个正确。
基本思想:设要打分的三元组为,要预测目标实体
和
是否存在关系;首先找出
的h跳出边节点集合和
的h跳入边节点集合取交集,即可得到带方向的最大路径长度为h+1的封闭子图的节点集合,据此在节点之间加入有向边形成有向封闭子图;节点的表示和GraIL相同,用节点到两个目标节点的相对最短距离的onehot向量拼接表示,即第i个三元组头(/尾)实体的表征
,边的初始表征为
;然后将子图信息、节点信息和边信息输入到模型中(改进的GNN,借鉴了CMPNN的思想),初始化节点和边的表征
,其中f1是激活函数;模型一共迭代l次,第k次的计算如下:用注意力机制获得边表征(此处的计算只为更新节点的表示,边会在后面更新)
然后更新该三元组中节点表示
这里的以及后面会用到的
分别是tail-edge、head-edge和relation-edge指示矩阵,以
为例,若第i个entity元素是第j个edge所指向的尾实体,则
,否则为0。要注意的是在最后一次迭代,实体的表征要由GRU网络计算
边的更新需要用到前面计算得到更新后的节点表示
其中f2也是个激活函数;经过l次迭代后得到实体和关系的表征向量,最后是打分函数得到三元组的分数进行判断。
特点:为避免不对称和反对称关系,引入了有向的封闭子图;另外对图网络进行改进,将边和实体表示都分别进行更新,其中边起着主要作用。