魔猴疯猿
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO中的匈牙利匹配算法原理详解
YOLO(You Only Look Once)在目标追踪中,通过匈牙利匹配算法解决多目标匹配问题。该算法用于将当前帧的预测目标与下一帧的检测目标进行一一对应,确保目标ID的连续性。匈牙利匹配算法通过计算目标之间的距离矩阵,逐步优化匹配结果,确保每个目标只与一个检测结果匹配,避免一对多或多对一的情况。具体步骤包括:1)计算距离矩阵;2)对矩阵进行行和列的最小值减法;3)用最少的线划掉所有零;4)根据划线的数量调整矩阵;5)找到唯一匹配的零值,确定对应关系。最终,YOLO结合IOU值和目标距离,实现准确的目标原创 2025-05-20 11:25:10 · 95 阅读 · 0 评论 -
基于yolo实现通过http接口修改目标id,追踪特定id的目标物体,附代码和详解
本文介绍了如何基于YOLO模型实现通过HTTP接口动态修改目标ID,并追踪特定ID的目标物体。首先,使用YOLO模型对视频帧中的目标物体进行识别和追踪,记录其移动轨迹。通过HTTP接口,用户可以传入或修改目标ID,程序将只追踪该ID对应的目标物体。代码中使用了FastAPI框架提供HTTP服务,并通过多线程技术实现视频处理与HTTP服务的并行运行。具体实现包括加载YOLO模型、读取视频帧、识别目标物体、记录轨迹,并通过HTTP接口动态调整追踪目标。最终,程序能够实时显示特定目标的移动轨迹。原创 2025-05-19 17:33:39 · 397 阅读 · 0 评论 -
YOLO中使用卡尔曼滤波实现目标追踪的原理
YOLO(You Only Look Once)是一种用于目标检测的算法,能够在视频流中识别和框选目标物体。然而,在视频流中追踪目标时,YOLO需要将连续帧中的同一物体关联起来,并赋予相同的ID以标识其运动轨迹。由于视频中可能存在多个相似物体或目标突然变化的情况,YOLO难以仅凭分类和置信度准确追踪目标。 卡尔曼滤波(Kalman filter)通过结合前一帧的运动规律和当前帧的观测值,预测目标在下一帧中的位置。它利用线性数学模型和高斯噪声假设,对预测值和观测值进行加权计算,从而更准确地估计目标位置。例如,原创 2025-05-19 16:57:26 · 309 阅读 · 0 评论 -
YOLO11,ultralytics-main源代码目录结构详解
本文详细介绍了YOLO11框架的ultralytics-main源代码目录结构,帮助用户更好地理解和使用YOLO模型。主要目录包括:docker文件夹,包含多种Docker镜像文件,适用于不同硬件环境;docs文件夹,存放YOLO的说明文档;examples文件夹,提供YOLO使用的示例代码;tests文件夹,包含单元测试模块;ultralytics文件夹,为核心代码所在,包含推理逻辑、配置、数据处理等模块。其中,engine文件夹负责训练和推理引擎,models文件夹存放模型架构,nn定义神经网络结构原创 2025-05-19 15:38:41 · 541 阅读 · 0 评论 -
基于yolo训练自己的视觉识别模型
本文介绍了如何基于YOLO模型训练自定义的视觉识别模型。首先,需要获取YOLO的官方源代码,并了解其目录结构,包括模型权重、文档、示例代码、测试代码等。接着,准备训练和验证数据集,确保每张图片都有对应的标签文件,并按照YOLO的规则构造标签。然后,安装必要的依赖库,配置数据集文件,并下载预训练权重文件。最后,通过命令行启动训练过程,设置相关参数如批次大小、训练次数、图像尺寸等。训练完成后,可以在指定目录下找到生成的模型文件。整个过程可能需要较长时间,但最终能够获得适用于特定识别任务的YOLO模型。原创 2025-05-19 00:47:47 · 119 阅读 · 0 评论 -
YOLO由浅入深,最简单地说明白YOLO基本实现原理
YOLO(You Only Look Once)是一种高效的实时目标检测技术,广泛应用于自动驾驶、监控和无人机等领域。其核心优势在于速度快,能够在视频流中实时识别目标并标出其位置、大小、类别及置信度。YOLO基于卷积神经网络(CNN),通过卷积层提取图像特征,池化层和扁平化层优化特征处理,全连接层进行分类。与传统方法不同,YOLO将图像分割成多个网格,每个网格预测多个边界框及其置信度,仅对高置信度的框进行详细计算,从而快速确定目标的位置和类别。这种机制使得YOLO在保持高准确率的同时,实现了高效的实时处理能原创 2025-05-12 22:48:40 · 163 阅读 · 0 评论