利用model_selection中的train_test_split对整个dataset进行切分

交叉验证:评估模型的表现
1.使用train_test_split可以对训练和测试集进行快速的切分
在切分之前该函数参数中的shuffle的default = True,默认
的会对数据进行洗牌之后再切分

import numpy as np
from sklearn.model_selection import train_test_split
X, y = np.arange(10).reshape((5,2)),range(5)

可以看到X是一个5*2的结构也就是5个samples,2个features
y是对应的label对于samples的数量同样为5个

print('X',X)
print('y', y)
X [[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]
y range(0, 5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2
                                                   ,random_state = 42)

可以使用model_selection模块中的train_test_split来对整个
数据集进行切分,第一个参数为n_samplesm_features,第二
个参数为labels,第三个参数为测试集所占所有数据的比例,随
机的状态为,如上参数所示test_size = 0.2 那么测试集大小应
当为n_samples
test_size = 1对应的训练集则为4

X_train
array([[8, 9],
       [4, 5],
       [0, 1],
       [6, 7]])
y_train
[4, 2, 0, 3]
X_test
array([[2, 3]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值