ssds目标检测项目中遇到的一些bug

在SSD目标检测项目中遇到了多个与PyTorch版本更新相关的问题,包括multibox_loss.py中的维度错误、训练脚本的修改、警告处理以及评估和可视化代码的调整。通过调整代码,解决了大小不匹配、参数弃用和数据类型转换等错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.问题
在ssds检测项目中,其中求损失的multibox_loss.py中遇到一个bug,错误为:

IndexError: The shape of the mask [32, 2990] at index 0 does not match the shape of the indexed tensor [95680, 1] at index 0

报错代码如下:

loss_c[pos] = 0

其中,pos和loss_c的尺寸维度分别是:

loss_c.size torch.Size([95680, 1])
pos.size torch.Size([32, 2990])

然后,我写了一小段代码,来看一下loss_c[pos]操作是怎么操作的,其中的原理以及作用是什么。

测试代码:

loss = torch.rand(10,1)
print('loss',loss)
pos = pos.byte()
print('pos.size',pos.size(),'pos.type',type(pos),'\n','pos',pos)
print(loss[pos])

结果如下:
在这里插入图片描述
可以看出,如果直接用上述的pos和loss_c的维度是会报上述的错误,经过我的测试,loss_c[pos]操作是把pos为1的元素对应的位置上的loss_c的元素保留下来,最终输出一个列表,所以两者的维度需要一样。

需要注意的是,pos定义的类型需要是byte 或bool tensor类型,不然不能用作index。

我将代码更改如下,将loss_c的维度更改为和pos一样:

loss = t
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值