Python 获取Kmeans聚类结果每一类的数据

本文详细介绍使用Python的Scikit-Learn库进行KMeans聚类分析的方法,包括如何获取聚类后的每一类数据,并提供了两种从DataFrame中筛选特定聚类数据的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 获取Kmeans聚类结果每一类的数据

获取聚类结果中每一类的数据,该数据类型是DataFrame

思路:获取clf_KMeans的标签,我这里是聚三类,标签就是0,1,2

将Label转成Series类型,再筛选出指定标签的res0,我筛选了1

最后在DataFrame里获取Label为1的数据

import pandas as pd
from sklearn.cluster import KMeans

  # 建立模型。n_clusters参数用来设置分类个数,即K值,这里表示将样本分为两类。 clf_KMeans
= KMeans(n_clusters=3, max_iter=10) # 模型训练。得到预测值。 print "clf_KMeans聚类中心\n", (clf_KMeans.cluster_centers_) quantity = pd.Series(clf_KMeans.labels_).value_counts() print "cluster2聚类数量\n", (quantity) #获取聚类之后每个聚类中心的数据 res0Series = pd.Series(clf_KMeans.labels_) res0 = res0Series[res0Series.values == 1] print"类别为1的数据\n",(df.iloc[res0.index])

 另外一种方法,更简洁

res = dataframe[(clf_KMeans.labels_ == 1)]

 

posted @ 2018-12-13 16:12 Rest探路者 阅读( ...) 评论( ...) 编辑 收藏
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值