算法刷题【11】数组中的第K个最大元素

本文解析如何在未排序数组中找到第k大的元素,涉及排序、分治法、优先队列等解决方案,并对比了不同方法的时间复杂度。重点讲解了使用优先队列优化的高效算法,适合LeetCode问题Kth Largest Element in an Array。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:

输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:

输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
说明:

你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/kth-largest-element-in-an-array

思路:乍一看题目,提示的太明显了,“未排序的数组中”,“数组排序后的”,意思不就是想让我们先排序嘛。所以我首先想到的是先用Arrays.sort()方法排序(老熟人了哈哈哈)。然后再换回倒数第k个数就好啦,这里要注意这个数下标,稍微枚举一个短一点的数组,比如 1 2 3,数组长度len=3,第2个最大的元素是2,下标为1,所以可得第k个最大元素的下标为len-k。

代码实现一

class Solution {
    public int findKthLargest(int[] nums, int k) {
           Arrays.sort(nums);
           return nums[nums.length-k];
        }
 }

代码实现二(方法一的具体实现+数组划分),这种方法的时间复杂度和空间复杂度都比较高,暂时不知道砸回事。不过现在能自己手写出这样的代码觉得还不错,增加了一点信心。

class Solution {
    public int findKthLargest(int[] nums, int k) {
        return quickSortMaxK(nums,0,nums.length-1,k);
    }
    public int quickSortMaxK(int[] nums,int low,int high,int k){
      int i=low;
      int j=high;
      while(i<j){
          while(i<j && nums[j]>=nums[low]) j--;
          while(i<j && nums[i]< nums[low]) i++;
          swap(nums,i,j);        
      }
      swap(nums,i,low);
      if(i>nums.length-k){//nums.length-k即第k个最大的元素排好序好在数组中的位置,所以每次分治之前先判断一下k在基准数的哪一边,然后就去递归调用那一边就好了。
         quickSortMaxK(nums,low,i-1,k);
      }
      if(i<nums.length-k){
         quickSortMaxK(nums,i+1,high,k);
      }
         return nums[nums.length-k];
    }
    public void swap(int[]nums,int i,int j){
        int t=nums[i];
        nums[i]=nums[j];
        nums[j]=t;
    }
}

代码实现三(官方解答)
优先队列(小顶堆)方法,设置优先队列的容量为k,那么堆顶元素就是最大的第k个数,把数组依次排入优先队列中,在压入的过程中比较要进入队列的元素和堆顶元素的大小,如果该元素大于堆顶元素就压入队列,如果小于等于堆顶元素,就遍历下一个元素,直至数组的元素全部遍历到。
时间复杂度与数组的长度n有关系,O(n)。

import java.util.PriorityQueue;
class Solution {
    public int findKthLargest(int[] nums, int k) {
     int len=nums.length;
      PriorityQueue<Integer> minHeap=new PriorityQueue<Integer>();
      for(int i=0;i<len;i++){
          if(minHeap.size()<k){
              minHeap.offer(nums[i]);
          }
          else if(minHeap.peek()<nums[i]){
              minHeap.poll();
              minHeap.offer(nums[i]);
          }
      }
      return minHeap.peek();
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值