Linear Regression_feed

本文通过使用TensorFlow实现线性回归模型,演示了如何找到最佳拟合直线的权重W和偏置b,并展示了如何训练模型以适应不同数据集的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# Lab 2 Linear Regression
import tensorflow as tf
tf.set_random_seed(777)  # for reproducibility

# Try to find values for W and b to compute y_data = W * x_data + b
# We know that W should be 1 and b should be 0
# But let's use TensorFlow to figure it out
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')

# Now we can use X and Y in place of x_data and y_data
# # placeholders for a tensor that will be always fed using feed_dict
# See http://stackoverflow.com/questions/36693740/
X = tf.placeholder(tf.float32, shape=[None])
Y = tf.placeholder(tf.float32, shape=[None])

# Our hypothesis XW+b
hypothesis = X * W + b

# cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))

# Minimize
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train = optimizer.minimize(cost)

# Launch the graph in a session.
sess = tf.Session()
# Initializes global variables in the graph.
sess.run(tf.global_variables_initializer())

# Fit the line
for step in range(2001):
    cost_val, W_val, b_val, _ = \
        sess.run([cost, W, b, train],
                 feed_dict={X: [1, 2, 3], Y: [1, 2, 3]})
    if step % 20 == 0:
        print(step, cost_val, W_val, b_val)

# Learns best fit W:[ 1.],  b:[ 0]
'''
...
1980 1.32962e-05 [ 1.00423515] [-0.00962736]
2000 1.20761e-05 [ 1.00403607] [-0.00917497]
'''

# Testing our model
print(sess.run(hypothesis, feed_dict={X: [5]}))
print(sess.run(hypothesis, feed_dict={X: [2.5]}))
print(sess.run(hypothesis, feed_dict={X: [1.5, 3.5]}))

'''
[ 5.0110054]
[ 2.50091505]
[ 1.49687922  3.50495124]
'''


# Fit the line with new training data
for step in range(2001):
    cost_val, W_val, b_val, _ = \
        sess.run([cost, W, b, train],
                 feed_dict={X: [1, 2, 3, 4, 5],
                            Y: [2.1, 3.1, 4.1, 5.1, 6.1]})
    if step % 20 == 0:
        print(step, cost_val, W_val, b_val)

# Testing our model
print(sess.run(hypothesis, feed_dict={X: [5]}))
print(sess.run(hypothesis, feed_dict={X: [2.5]}))
print(sess.run(hypothesis, feed_dict={X: [1.5, 3.5]}))

'''
1960 3.32396e-07 [ 1.00037301] [ 1.09865296]
1980 2.90429e-07 [ 1.00034881] [ 1.09874094]
2000 2.5373e-07 [ 1.00032604] [ 1.09882331]
[ 6.10045338]
[ 3.59963846]
[ 2.59931231  4.59996414]
'''
Windows 系统修复工具主要用于解决 Windows 11/10 系统中的各种常见问题,具有操作简单、功能全面等特点: 文件资源管理器修复:可解决文件资源管理器卡死、崩溃、无响应等问题,能终止崩溃循环。还可修复右键菜单无响应或选项缺失问题,以及重建缩略图缓存,让图片、视频等文件的缩略图正常显示,此外,还能处理桌面缺少回收站图标、回收站损坏等问题。 互联网和连接修复:能够刷新 DNS 缓存,加速网页加载速度,减少访问延迟。可重置 TCP/IP 协议栈,增强网络连接稳定性,减少网络掉线情况,还能还原 Hosts 文件,清除恶意程序对网络设置的篡改,保障网络安全,解决电脑重装系统后网络无法连接、浏览器主页被篡改等问题。 系统修复:集成系统文件检查器(SFC),可自动扫描并修复受损的系统文件。能解决 Windows 激活状态异常的问题,还可重建 DLL 注册库,恢复应用程序兼容性,解决部分软件无法正常运行的问题,同时也能处理如 Windows 沙箱无法启动、Windows 将 JPG 或 JPEG 保存为 JFIF 等系统问题。 系统工具维护:提供启动管理器、服务管理器和进程管理器等工具,用户可控制和管理启动程序、系统服务和当前运行的进程,提高系统的启动和运行速度,防止不必要的程序和服务占用系统资源。还能查看系统规格,如处理器线程数、最大显示分辨率等。 故障排除:集成超过 20 个微软官方诊断工具,可对系统问题进行专业排查,还能生成硬件健康状态报告。能解决搜索和索引故障、邮件和日历应用程序崩溃、设置应用程序无法启动等问题,也可处理打印机、网络适配器、Windows 更新等相关故障。 其他修复功能:可以重置组策略设置、catroot2 文件夹、记事本等多种系统设置和组件,如重置 Windows 应用商店缓存、Windows 防火墙设置等。还能添加重建图标缓存支持,恢复粘滞便笺删除
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值