matlab 建立ARIMA-GARCH模型

本文介绍使用ARIMA-GARCH模型进行金融市场收益率及其条件方差的预测过程。通过实际股票指数数据拟合模型,并对未来1000个周期的收益率进行预测,同时给出95%置信区间的估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%% Forecast Conditional Mean and Variance Model
% Step 1. Load the data and fit a model.
load Data_EquityIdx
nasdaq = DataTable.NASDAQ;
r = price2ret(nasdaq);
N = length(r);

model = arima('ARLags',1,'Variance',garch(1,1),...
              'Distribution','t');%Build ARIMA-GARCH
fit = estimate(model,r,'Variance0',{'Constant0',0.001});
[E0,V0] = infer(fit,r);#EO为残差
% Forecast returns and conditional variances.
[Y,YMSE,V] = forecast(fit,1000,'Y0',r,'E0',E0,'V0',V0);%预测1000个值
%95%的区间估计
upper = Y + 1.96*sqrt(YMSE);
lower = Y - 1.96*sqrt(YMSE);

figure
subplot(2,1,1)
plot(r,'Color',[.75,.75,.75])
hold on
plot(N+1:N+1000,Y,'r','LineWidth',2)
plot(N+1:N+1000,[upper,lower],'k--','LineWidth',1.5)
xlim([0,N+1000])
title('Forecasted Returns')
hold off
subplot(2,1,2)
plot(V0,'Color',[.75,.75,.75])
hold on
plot(N+1:N+1000,V,'r','LineWidth',2);
xlim([0,N+1000])
title('Forecasted Conditional Variances')
hold off

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值