机器学习中的 K-均值聚类算法及其优缺点

本文介绍了K-均值聚类算法,一种简单且高效的无监督学习方法,阐述了其步骤、优点(如计算效率高、可解释性强)以及缺点(需指定K值、对初始质心敏感和对噪声/离群点敏感)。提醒在实际应用中需注意这些因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类(K-means clustering)是一种常用的无监督学习算法,用于将数据集划分为K个不相交的簇。该算法通过迭代的方式将每个样本分配到最近的簇,并更新簇的质心,直到达到收敛条件。以下是K-均值聚类算法的步骤:

  1. 初始化:从数据集中随机选择K个样本作为初始质心。
  2. 分配:计算每个样本与每个质心之间的距离,并将样本分配到距离最近的质心所属的簇。
  3. 更新质心:对每个簇,计算簇中所有样本的平均值,将其作为新的质心。
  4. 重复步骤2和3,直到质心不再发生明显变化或达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 相对简单:K-均值聚类算法是一种简单且易于实现的聚类算法。
  2. 计算效率高:K-均值聚类算法的时间复杂度相对较低,适用于大规模数据集。
  3. 可解释性强:K-均值聚类算法生成的簇中心可以帮助解释数据。

在这里插入图片描述

K-均值聚类算法的缺点包括:

  1. 需要指定簇的数量K:K-均值聚类算法需要提前指定簇的数量K,对于没有明确的K值的情况,可能需要进行多次试验。
  2. 对初始质心敏感:K-均值聚类算法对初始质心的选择非常敏感,不同的初始质心可能会导致不同的聚类结果。
  3. 对噪声和离群点敏感:K-均值聚类算法对噪声和离群点非常敏感,可能会导致错误的聚类结果。

总的来说,K-均值聚类算法是一种常用且有效的聚类算法,但在使用时需要注意选择适当的K值和初始质心,并处理好噪声和离群点的情况。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贺公子之数据科学与艺术

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值