- 博客(3)
- 收藏
- 关注
原创 自动驾驶环境感知(3)-2D视觉感知算法-单阶段检测
速度优势:省略ROI Pooling减少逐框计算,全卷积实现高度并行化。精度代价:单阶段检测可能丢失精细化特征(如小物体),但RetinaNet通过Focal Loss等设计缩小了差距。适用场景:实时性要求高(如视频监控)→ 单阶段;精度优先(如医学图像)→ 两阶段。
2025-05-11 19:04:20
827
原创 自动驾驶环境感知(2)-2D视觉感知算法-Faster R-CNN,Anchor,模型评估基本概念-Precision/Recall, mAP, FPN
Precision表示模型预测为正的样本中,有多少是真正的正样本。PrecisionTPTPFPPrecisionTPFPTP:正确检测到的正样本(预测正确)。:误检(实际为负样本,但被预测为正)。Recall表示真实的正样本中,有多少被模型正确检出。RecallTPTPFNRecallTPFNTP:漏检(真实为正样本,但未被预测到)。指标关注点公式适用场景Precision预测结果的准确性避免误检(如垃圾邮件过滤)Recall。
2025-05-11 17:47:55
732
原创 自动驾驶环境感知(1)-2D视觉感知算法-R-CNN/Fast R-CNN/Faster R-CNN
在目标检测任务中,共享计算是Fast R-CNN和Faster R-CNN等改进模型的核心优化策略之一。它通过减少重复计算和充分利用网络的特征,显著提高了效率。什么是共享计算?共享计算的核心思想是:在整个网络中,某些计算步骤的结果可以被多个任务或模块共享,从而避免重复计算。对整个图像进行一次CNN特征提取,生成的特征图可以被后续的多个任务(如候选框生成、分类、边界框回归)共享。这样就不需要对每个候选框单独进行CNN计算,大大减少了计算量。
2025-05-06 23:34:49
665
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人