自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 自动驾驶环境感知(3)-2D视觉感知算法-单阶段检测

速度优势:省略ROI Pooling减少逐框计算,全卷积实现高度并行化。精度代价:单阶段检测可能丢失精细化特征(如小物体),但RetinaNet通过Focal Loss等设计缩小了差距。适用场景:实时性要求高(如视频监控)→ 单阶段;精度优先(如医学图像)→ 两阶段。

2025-05-11 19:04:20 827

原创 自动驾驶环境感知(2)-2D视觉感知算法-Faster R-CNN,Anchor,模型评估基本概念-Precision/Recall, mAP, FPN

Precision表示模型预测为正的样本中,有多少是真正的正样本。PrecisionTPTPFPPrecisionTPFPTP​:正确检测到的正样本(预测正确)。:误检(实际为负样本,但被预测为正)。Recall表示真实的正样本中,有多少被模型正确检出。RecallTPTPFNRecallTPFNTP​:漏检(真实为正样本,但未被预测到)。指标关注点公式适用场景Precision预测结果的准确性避免误检(如垃圾邮件过滤)Recall。

2025-05-11 17:47:55 732

原创 自动驾驶环境感知(1)-2D视觉感知算法-R-CNN/Fast R-CNN/Faster R-CNN

在目标检测任务中,共享计算是Fast R-CNN和Faster R-CNN等改进模型的核心优化策略之一。它通过减少重复计算和充分利用网络的特征,显著提高了效率。什么是共享计算?共享计算的核心思想是:在整个网络中,某些计算步骤的结果可以被多个任务或模块共享,从而避免重复计算。对整个图像进行一次CNN特征提取,生成的特征图可以被后续的多个任务(如候选框生成、分类、边界框回归)共享。这样就不需要对每个候选框单独进行CNN计算,大大减少了计算量。

2025-05-06 23:34:49 665

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除