- 概念:矩阵中大部分元素为0,且分布没有规律时,则称稀疏矩阵
- 性质:这样的数组可以进行压缩存储,减少空间的占用。
- 方法:常用压缩方法有三元组法,邻接表,十字链表与违地址表示法
- 三元组法:把具有不同值的元素的行列及值记录在一个小规模的数组中
- 练习:用三元组法存储和还原系数矩阵
package sparsematrix;
/*
稀疏数组存储的思路(三元组法)
1. 遍历 原始的二维数组,得到有效数据的个数 sum
2. 根据sum 就可以创建 稀疏数组 sparseArr int[sum + 1] [3]
3. 将二维数组的有效数据数据存入到稀疏数组
稀疏数组还原的思路
1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的 chessArr2 = int [11][11]
2. 在读取稀疏数组后几行的数据,并赋给原始的二维数组即可.*/
public class SparseMatrixDemo {
public static void main(String[] args) {
// 创建原始二维数组
int[][] arr = new int[4][4];
arr[0][3] = 1;
arr[1][2] = 3;
arr[1][3] = 2;
arr[2][0] = 1;
arr[3][1] = 2;
// 原数组遍历输出
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[0].length; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
/* 稀疏数组存储的思路(三元组法)*/
// 1. 遍历 原始的二维数组,得到有效数据的个数 cnt
int cnt = 0;
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[0].length; j++) {
if (arr[i][j] != 0) {
cnt++;
}
}
}
// 2. 根据cnt就可以创建,稀疏数组 sparseArr int[cnt + 1] [3]
int[][] sparseArr = new int[cnt + 1][3];
sparseArr[0][0] = cnt;
sparseArr[0][1] = arr.length;
sparseArr[0][2] = arr[0].length;
// 3. 将二维数组的有效数据数据存入到稀疏数组
int k = 1;
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[0].length; j++) {
if (arr[i][j] != 0) {
sparseArr[k][0] = arr[i][j];
sparseArr[k][1] = i;
sparseArr[k][2] = j;
k++;
}
}
}
System.out.println("—————————");
// 稀疏数组存储输出
for (int i = 0; i < sparseArr.length; i++) {
for (int j = 0; j < sparseArr[0].length; j++) {
System.out.print(sparseArr[i][j] + " ");
}
System.out.println();
}
/* 稀疏数组还原的思路 */
// 1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组。
int[][] arr0 = new int[sparseArr[0][1]][sparseArr[0][2]];
// 2. 在读取稀疏数组后几行的数据,并赋给原始的二维数组即可
for (int i = 1; i < sparseArr.length; i++) {
arr0[sparseArr[i][1]][sparseArr[i][2]] =sparseArr[i][0];
}
System.out.println("—————————");
// 原数组遍历输出
for (int i = 0; i < arr0.length; i++) {
for (int j = 0; j < arr0[0].length; j++) {
System.out.print(arr0[i][j] + " ");
}
System.out.println();
}
}
}
