零基础入门CV赛事- 街景字符编码识别(Datawhale 打卡学习)

零基础入门CV赛事- 街景字符编码识别

task02 数据读取与数据扩增

  • 1,数据读取:使用PillowOpenCV
  • 2,数据扩增
    • 数据扩增方法有很多:从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。
      对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签
    • 常用的数据扩增库
      • torchvision:pytorch官方提供的数据扩增库,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等;
      • imgaug:imgaug是常用的第三方数据扩增库,提供了多样的数据扩增方法,且组合起来非常方便,速度较快;
      • albumentations:是常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点检测都支持,速度较快。
  • 3,Pytorch读取数据
import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)
        
        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl)  + (5 - len(lbl)) * [10]
        
        return img, torch.from_numpy(np.array(lbl[:5]))

    def __len__(self):
        return len(self.img_path)

train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]

train_loader = torch.utils.data.DataLoader(
        SVHNDataset(train_path, train_label,
                   transforms.Compose([
                       transforms.Resize((64, 128)),
                       transforms.ColorJitter(0.3, 0.3, 0.2),
                       transforms.RandomRotation(5),
                       transforms.ToTensor(),
                       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])), 
    batch_size=10, # 每批样本个数
    shuffle=False, # 是否打乱顺序
    num_workers=10, # 读取的线程个数
)

for data in train_loader:
    break

task01 赛题理解

  • 1,比赛链接:https://tianchi.aliyun.com/competition/entrance/531795/introduction

  • 2,报名时间:20200518

  • 3,数据展示:
    在这里插入图片描述

  • 4,评测标准:
    在这里插入图片描述

  • 5,参考资料:
    https://github.com/datawhalechina/team-learning/tree/master/03%20%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89/%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E5%AE%9E%E8%B7%B5%EF%BC%88%E8%A1%97%E6%99%AF%E5%AD%97%E7%AC%A6%E7%BC%96%E7%A0%81%E8%AF%86%E5%88%AB%EF%BC%89

  • 6,其他学习资料:
    https://tianchi.aliyun.com/competition/entrance/531795/learn

  • 7,解题思路

    • 传统cv思路,图片先做二值化,做倾斜校正,根据投影做切割,根据0-9的字符的特征写相对应的识别逻辑进行识别
    • 物体检测思路
      • 参考资料:https://www.yanxishe.com/TextTranslation/1333
      • 预训练模型选择:https://pytorch.org/docs/stable/torchvision/models.html#object-detection-instance-segmentation-and-person-keypoint-detection
    • 参考
      • 简单入门思路:定长字符识别
        可以将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。
        因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。
        经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。
      • 专业字符识别思路:不定长字符识别
        在字符识别研究中,有特定的方法来解决此种不定长的字符识别问题,比较典型的有CRNN字符识别模型。
        在本次赛题中给定的图像数据都比较规整,可以视为一个单词或者一个句子
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值