GEE 案例:1980-2020年长时间序列人口数据监测和图表加载

目录

简介

数据

JRC/GHSL/P2023A/GHS_POP"

函数

ui.Chart.image.series(imageCollection, region, reducer, scale, xProperty)

Arguments:

Returns: ui.Chart

结果


简介

利用人口数据,进行1980-2020年指定区域的人口监测,并进行图表加载

数据

JRC/GHSL/P2023A/GHS_POP"

JRC/GHSL/P2023A/GHS_POP是由欧洲委员会联合研究中心(JRC)的全球人类定居面积与交通模式组(GHSL)开发的一个数据集,用于估计全球人口数量的空间分布。

该数据集基于遥感数据、地理信息系统(GIS)和机器学习技术,结合全球的人口普查数据和经济数据,通过空间建模和融合算法,预测和估计了全球各个区域的人口分布。

JRC/GHSL/P2023A/GHS_POP数据集的主要特点包括:

  1. 高分辨率:该数据集提供了30米的网格分辨率,能够较精确地表示不同地区的人口分布情况。
  2. 全球覆盖:数据集覆盖了全球范围的不同地区,包括城市、乡村和偏远地区。
  3. 可更新性:数据集采用了自动化的工作流程,可以根据新的遥感数据和人口普查数据进行更新和改进。
  4. 可视化:数据集提供了可视化工具,使用户能够对人口分布进行可视化分析和可视化查询。

JRC/GHSL/P2023A/GHS_POP数据集主要应用于城市规划、社会经济研究、人口迁移模拟、灾害风险评估等领域。它为研究人员、政府机构和决策者提供了一个重要的数据资源,以支持基于人口分布的决策和政策制定。

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在Android开发中,为了提升用户体验视觉效果,背景模糊化处理是一种常用的设计手段。它可以为应用界面增添层次感,同时突出显示主要内容。本文将详细介绍如何在Android中实现背景模糊化功能。 首先,我们需要获取当前设备的壁纸作为背景。这可以通过WallpaperManager类来完成。调用WallpaperManager.getInstance(this.getContext())可以获取壁纸管理器实例,然后通过getDrawable()方法获取当前壁纸的Drawable对象。接下来,需要将壁纸Drawable转换为Bitmap对象,因为模糊处理通常需要在Bitmap上进行。可以通过((BitmapDrawable) wallpaperDrawable).getBitmap()来完成这一转换。 模糊处理的核心是使用Android的RenderScript API。RenderScript是一种高效的并行计算框架,特别适合处理图像操作。在blur()方法中,我们创建了一个RenderScript实例,并利用ScriptIntrinsicBlur类来实现模糊效果。ScriptIntrinsicBlur提供了设置模糊半径(setRadius(radius))执行模糊操作(forEach(output))的方法。模糊半径radius可以根据需求调整,以达到期望的模糊程度。 然而,仅依赖ScriptIntrinsicBlur可能无法达到理想的模糊效果,因此我们还需要对原始图片进行缩放处理。为此,我们设计了small()big()方法。先将图片缩小(small()),然后执行模糊操作,最后再将图片放大(big())。这种方式不仅可以增强模糊效果,还能在一定程度上提高处理速度。在small(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值