GEE土地分类:一文读懂精度评定—混淆矩阵confusion matrix、整体精度OA、用户者精度、生产者精度、kappa系数和F1score系数含案例

在 Google Earth Engine 中构建和分析混淆矩阵

在遥感和机器学习中,混淆矩阵是评估分类模型性能的重要工具。本文将演示如何在 Google Earth Engine (GEE) 中构建混淆矩阵,并计算各种性能指标,如准确率、Kappa 值和 F1-score。

1. 构建混淆矩阵

首先,我们需要构建一个混淆矩阵。混淆矩阵的行对应实际值,列对应预测值。以下是构建混淆矩阵的代码示例:

var array = ee.Array([[32, 0, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值