Google Earth Engine 红树林制图方法的代码(三个模块)

谷歌地球引擎红树林制图方法(GEM)提供了一种直观、易用且可复制的工具,适用于广泛的非专业沿海管理者和决策者。该工具全面回顾并整合了相关的红树林遥感文献,并利用云计算的力量,包括简化的基于图像的潮汐校准方法。GEM 可免费用于非营利用途,并在 GEE 中运行,包含全面且详细注释的代码。

GEM 专门设计用于绘制全球范围内多日期红树林分布并量化其动态变化。目前可用的工具和方法未能充分利用沿海管理者通常持有的丰富地方专业知识——GEM 致力于填补这一空白,帮助结合地方专业知识与 GEE 的云计算能力。虽然不需要遥感、地理空间分析或编程的高级技能,但该工具的设计假设用户具备基本的计算机技能,并熟悉红树林制图和动态评估的关键步骤。

一项试点研究(即 Yancho 等人 2020 年的研究)发表在《遥感》期刊关于“红树林遥感”的特刊上,展示了 GEM 在全球红树林损失热点地区缅甸(缅甸)整个海岸的应用。发表的论文不仅展示了 GEM 的一种应用,还详细描述了工具中包含的各种参数、选项、输出和用户界面功能。该论文逐步引导潜在用户了解工具的三个模块。

GEM 的三个模块之外,还有一个“函数”文件夹,其中包含工具使用的部分后端支持代码。此文件夹中的任何脚本如果在 GEE 中独立运行都不会产生任何输出或地图。这些脚本包含是为了可能感兴趣的用户了解某些中间产品是如何生成的或统计数据是如何计算的。这些脚本的包含在本文档的“操作”部分(下方)有进一步讨论,该部分还提供了如何为个人使用最佳运行 GEM 的更多详细信息。最方便的方式是遵循三个超链接并使用捕获的代码。然而,这个 Git 仓库也可以复制并保存为个人 GEE 脚本库中的脚本。后者的选项更复杂,但将允许用户更全面地理解 GEM 功能——这并非实际使用工具所必需的。

全部代码

<think>好的,用户想了解如何使用遥感影像和GIS工具提取红树林海岸线。首先,我需要回忆一下相关的步骤和方法。根据之前学过的知识,红树林通常生长在潮间带,所以它们的遥感影像会有特定的光谱特征。可能需要用到多光谱或高光谱数据,比如Landsat、Sentinel-2或者更高分辨率的影像。 首先,数据获取是关键。用户需要选择合适的遥感数据源。比如,Sentinel-2有较高的空间分辨率和多光谱波段,适合红树林的识别。然后预处理步骤,包括辐射校正、大气校正和几何校正,确保数据质量。 接下来是图像分类。监督分类方法,比如最大似然法或支持向量机(SVM),可能需要用户先选择训练样本。红树林在近红外波段通常有较高的反射率,因为健康的植被会强烈反射近红外光。NDVI(归一化植被指数)可以用来增强植被信息,帮助区分红树林和其他植被类型。 不过红树林和其他植被的光谱特征可能相似,这时候可能需要结合其他指数,比如NDWI(归一化水体指数)来区分水体和植被,或者使用纹理特征。另外,红树林生长在海岸线附近,所以结合高程数据或潮汐数据可能有助于精确定位。 GIS工具的使用方面,可能需要用ArcGIS或者QGIS进行空间分析。比如,分类后的栅格数据转换成矢量图层,然后进行海岸线提取。可能需要使用边缘检测算法或者结合水陆边界来确定精确的海岸线位置。 用户提到的参考文献中,引用[4]提到了联合GEE与多源遥感数据进行沼泽湿地信息提取,这可能涉及到使用Google Earth EngineGEE)平台处理大量遥感数据,自动提取特征。GEE可以提供长时间序列的数据,适合监测红树林的变化。 另外,引用[3]提到电子地图和GIS的关系,说明GIS在数据可视化和分析中的桥梁作用。提取后的红树林海岸线数据可以导入GIS进行进一步的可视化和空间分析,比如计算面积变化、监测侵蚀或扩张情况。 需要注意的问题包括影像的时间选择,最好选择低潮时的影像,确保红树林区域暴露。此外,不同季节的植被生长状态可能影响分类结果,可能需要多时相分析来提高准确性。 可能还需要后处理步骤,比如去除小斑块、平滑边界等,以提高提取结果的精度。精度验证也是关键,需要实地验证或使用高分辨率影像进行对比。 总结步骤应该是:数据获取与预处理 -> 特征增强与指数计算 -> 分类与提取 -> 后处理与精度验证 -> GIS分析与可视化。过程中可能需要结合多源数据和多种方法,确保结果可靠。</think>### 使用遥感影像和GIS工具提取红树林海岸线的步骤 #### 1. **数据获取与预处理** - **遥感数据源选择** 优先选择中高分辨率的多光谱影像(如Sentinel-2、Landsat-8/9),红树林的光谱特征在近红外(NIR)和短波红外(SWIR)波段表现显著[^4]。高分辨率数据(如WorldView-3)可提升细节精度,但需权衡数据成本。 - **预处理步骤** - **辐射校正**:消除传感器噪声和光照差异。 - **大气校正**:使用ENVI的FLAASH模块GEE平台工具,减少大气散射影响。 - **几何校正**:通过地面控制点(GCP)配准影像,误差控制在1个像元内。 #### 2. **特征增强与指数计算** - **光谱指数提取** - **NDVI**(归一化植被指数):$NDVI = \frac{NIR - Red}{NIR + Red}$,用于区分植被与非植被区域。红树林的NDVI值通常高于0.5。 - **NDWI**(归一化水体指数):$NDWI = \frac{Green - NIR}{Green + NIR}$,辅助分离水体与潮间带植被。 - **MNDWI**(改进型NDWI):$MNDWI = \frac{Green - SWIR1}{Green + SWIR1}$,进一步优化水陆边界提取。 - **纹理特征分析** 使用灰度共生矩阵(GLCM)提取影像纹理(如对比度、熵),区分红树林与其他植被(如农田、森林)。 #### 3. **分类与红树林提取** - **监督分类** 在GIS软件(如QGIS、ArcGIS)或GEE平台中,选择训练样本并应用算法: - **支持向量机(SVM)**:对高维数据(如多光谱+纹理)分类效果较好。 - **随机森林**:适合处理多源数据(如融合雷达数据)。 - **面向对象分类** 对高分辨率影像分割为对象,结合光谱、形状特征分类,减少“椒盐噪声”。 #### 4. **海岸线精确定位** - **水陆边界提取** 基于NDWI/MNDWI阈值分割获取水体掩膜,结合潮汐数据(如最低低潮线)确定海岸线基线。 - **边缘检测与矢量化** 使用Canny算法提取分类结果边缘,转为矢量线图层,并通过拓扑检查修正断裂或重叠。 #### 5. **后处理与验证** - **精度评价** 生成混淆矩阵,计算总体精度(OA)和Kappa系数。利用高分辨率影像或实地采样点验证。 - **数据优化** 平滑矢量边界、剔除小斑块(如面积小于0.1公顷的区域)。 #### 6. **GIS分析与可视化** - **空间统计** 计算红树林面积变化、侵蚀速率(需多时相数据)。 - **制图输出** 在GIS中叠加地形、行政区划等图层,生成专题图(图例需标注分类精度和影像时间)。 --- ### 示例代码(基于GEE平台) ```javascript // 在Google Earth Engine中提取红树林区域 var sentinel2 = ee.ImageCollection('COPERNICUS/S2_SR') .filterDate('2022-01-01', '2022-12-31') .filterBounds(study_area); // 计算NDVI和MNDWI var addIndices = function(image) { var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI'); var mndwi = image.normalizedDifference(['B3', 'B11']).rename('MNDWI'); return image.addBands([ndvi, mndwi]); }; var composite = sentinel2.map(addIndices).median(); // 阈值分割(示例值需根据实际调整) var mangroves = composite.updateMask( composite.select('NDVI').gt(0.5) .and(composite.select('MNDWI').gt(0.2)) ); // 导出结果至Google Drive Export.image.toDrive({ image: mangroves, description: 'Mangrove_Extraction', scale: 10, region: study_area }); ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值