目录
6.0 导言
- P192 本章的方法都是memory-based,很少或不需要训练。模型就是整个训练集(PRML中高斯过程似乎也是这样)
- P191 本章中的“核”大多作为局部化工具,其技巧不要与其他“核方法”相混淆
6.1 一维核光滑器
- P192 Nearest-Neighbor核不连续,很容易的改进是Epanechnikov (quadratic) Kernel,连续
- P193 度量窗口宽度Metric window widths(常数 h λ ( x ) h_\lambda(x) hλ(x))倾向于保持bias不变,variance与局部密度成反比;近邻窗口Nearest-neighbor window正好相反
- P193 当某个 x x x重复,而 y y y不相等时,最近邻方法出现问题;而在数据边界,度量邻域则缺样本点
- P194 Epanechnikov、Tri-cube、Gaussian的核函数区别
- P194 紧核compact kernel
6.1.1 局部线性回归
- P195 在局部用一次函数而不是常数值函数进行拟合(其实之前提到的方法就是MSE loss下的在局部常数回归). 这种方法求解之后仍然是邻域的其他样本带权平均的方法
- P196 局部回归可以看作是自动修改权重核来纠正不对称窗口、或者两边密度不对称等的偏差
- P197 权重之和一定为1,而且对于 k k k次回归,当 1 ⩽ j ⩽ k 1\leqslant j \leqslant k 1⩽j⩽k时, ∑ i = 1 N ( x i − x 0 ) j l i ( x 0 ) = 0 \sum_{i=1}^N (x_i - x_0)^j l_i(x_0)=0 ∑i=1N(xi−x0)jli(x0)=0
6.1.2 局部多项式回归
- P197 次数越高,bias越低,variance越高
- P198 局部二次回归,能更拟合曲线内部的一些弯曲部分;但对边界则没什么提升。边界的拟合提升主要来自于局部一次线性回归
- P198 渐近分析表明奇数阶的局部多项式表现得比偶数阶要好.大部分是因为渐近情况下,MSE 由边界影响主导.
- 注意,这时候,感觉基扩张和带权局部回归有一起使用的感觉
6.2 选择核宽度
- P199 回想第五章,光滑样条也是一种非参拟合方法. 可以和局部线性拟合进行对比
- 当核宽度非常宽时,局部方法退化为全局方法,所以局部方法似乎包含的曲线更广
6.3 R p \mathbb R^p Rp中的局部回归
- P200 局部多项式回归要有交叉项
- P200 边界问题在高维情况下更严重,因为,维度越高,边界占比越大,也即高维灾难。直接改核会更复杂,尤其是对于不规则边界。局部多项式回归则无缝将任意维度边界进行矫正
- P200 当维度超过2或3时,局部回归不是很有用
- P201 给出了一个3维情况,以两个特征为条件分组,拟合剩下一个变量的局部线性回归
6.4 R p \mathbb R^p Rp中的结构化局部回归模型
6.4.1 结构核
- P203 不同特征维度可以给不同权重,通过一个半正定矩阵 A \bm A A来控制
6.4.2 结构回归函数
- P203 方差分析analysis-of-variance(ANOVA)
- P203 可变系数模型varying coefficient models,以某些feature为条件的线性回归系数组
6.5 局部似然和其他模型
- P205 局部模型的推广,用局部似然
- P206 局部逻辑回归
6.6 核密度估计和分类
6.6.1 核密度估计
- P208 Parzen估计,及其卷积形式,高维推广
6.6.2 核密度分类
- P210 非参数贝叶斯分类器,用非参数方法估计一个类的分布,而不是做高斯假设
- P210 图6.12的例子中局部逻辑回归,用tri-cube核,在不同区域,用k-NN选择核宽度,所以说核宽度还是自适应的。。太强了
6.6.3 朴素贝叶斯分类器
- P211 朴素贝叶斯分类器能很好处理高维情况
- P211 朴素贝叶斯每一维可以用核密度估计
- P211 朴素贝叶斯表现好的原因是bias或许不会对后验概率造成太大影响
- P211 朴素贝叶斯的对数似然比能写成广义加性模型,此外注意和逻辑回归之间的联系(习题6.9)
6.7 径向基函数和核
- P212 基函数尽管没有局部性,例如truncated-power bases和sigmoidal basis,但是复合函数 f ( x ) f(x) f(x)仍然可以显示出局部性,通过特定的系数值来消除全局性
- P212 明确指出截断幂基truncated-power bases有一个等价的B样条基,形成同样的函数空间
- P212 径向基函数网络RBF network(RBF网络),最小二乘非凸
- P213 通常用高斯混合的方法进行无监督训练,得到RBF网络中的原型位置 ξ j \xi_j ξj和尺度参数 λ j \lambda_j λj
- P213 径向基函数的重标准化renormalized radial basis functions, R p \mathbb R^p Rp中Nadaray-Watson核回归估计量可以看作是重标准化后径向基函数的在样本点展开的special case
6.8 混合模型的密度估计和分类
- P214 混合模型(例如高斯混合)可以看作是一种核方法,当高斯混合中不同分量方差一样时,就成了径向基展开;另外,方差为固定单位阵下,当高斯分量数量与样本数量相等时(原文是 M ↑ N M\uparrow N M↑N,理解不了这个符号。。),高斯混合的最大似然会近似6.6.1节核密度估计式6.22
- P215 拿高斯混合做二分类,效果这么好的嘛
6.9 计算考虑
- P216 核、局部回归、密度估计都是memory-based的方法,模型就是整个训练集,拟合发生在预测时刻
- 我感觉,上述这些模型中,核提供了权重,跟核相乘的另一个因子(例如高斯混合里的类概率,注意高斯混合退化成核密度估计后,类概率全部相等;径向基函数中待拟合的参数,当它退化成局部线性回归后,参数就变成了 y y y)提供了拟合值
参考文献:
[1] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning, Second Edition
[2] ESL CN