熵、联合熵、条件熵、KL散度、互信息定义

本文深入探讨了熵在物理及计算机领域的应用,包括其在衡量系统无序度、信息熵的概念,以及联合熵、条件熵、KL散度和互信息等关键概念的解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

熵在物理中是用于衡量一个热力学系统的无序程度,表达式为△S=Q/T,其中Q是吸收或者释放的热量,T是温度。

计算机领域将其定义为离散随机事件出现的概率。一个系统越是有序信息熵就会越低;反之,系统越是混乱,信息熵就越高。

「联合熵」 两个随机变量X,Y的联合分布可求得联合熵。

「条件熵」 在随机变量X发生的前提下,随机变量Y带来的新的熵,即为Y的条件熵。

其含义是衡量在已知随机变量X的条件下随机变量Y带来的新的熵即为Y的条件熵。

「KL散度」 两个概率分布(probability distribution)间差异的非对称性度量。

「互信息」 两个随机变量X,Y的互信息定义为X,Y的联合分布和各自独立分布乘积的KL散度。

微信搜索全都是码农,点个关注不迷路啦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值