Linux下conda安装caffe(超简单),pb转caffe

本文档记录了在AIStudio中安装Anaconda和caffe,并将TensorFlow的.pb模型转换为Caffe的.prototxt格式的过程。首先创建Python3.5环境,然后安装caffe-cpu,接着安装tensorflow1.15.0和mmdnn。通过netron检查模型输入输出节点,使用mmconvert进行转换。最终成功将模型转换,证明了在Linux环境下conda安装caffe是最简便的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近碰到了需要将tensorflow的pb模型转为caffeprototxt格式的问题,参考了 

keras/tensorflow1.x模型转换为caffe推理模型 - 知乎

mmdnn tensorflow 转 caffe

发现除了安装mmdnn以外,还依赖caffe,配置caffe环境会遇到各种坑,因为我不需要caffe训练模型,只是为了转换,因此只需要装caffe-cpu版本即可,最后经过不断尝试,在百度的AI Studio上安装上了caffe,这里记录一下caffe的安装:

Anaconda的安装就不赘述了,百度的AI Studio上已经有conda了,因此直接从caffe的安装开始:

1.先新建一个python3.5环境

conda create -n caffe-py3.5 python=3.5 -c defaults

输入 y 进行安装

2.激活环境

安装完毕后,激活进入环境

source activate caffe-py3.5

3.安装caffe-cpu版本或caffe-gpu版本

conda install -c defaults caffe
conda install -c defaults caffe-gpu

4.测试安装是否成功:

python3
import caffe

 无报错说明安装成功,退出python

exit()

5.安装tensorflow:

conda install -c defaults tensorflow==1.15.0

6.安装mmdnn

pip install mmdnn

6. 我们以tf官网下载的mobilenetv1模型为例,转换前先使用netron查看pb模型输入和输出节点name,input shape

记住name以及input shape

7.进行pb ----> caffe转换,命令行输入:

mmconvert -sf tensorflow -iw mobilenet_v1.pb --inNodeName input --inputShape 192,192,3 --dstNodeName MobilenetV1/Predictions/Reshape_1 -df caffe -om tf_mobilenet

8.转换结果:

成功转换为caffe模型:

 

总结:

caffe还是在Linux下用conda安装最简单方便!

实测,python3.6、python3.5都可以按照上述方法安装caffe

===================================================================

Reference:

1.Anaconda安装caffe(超简单)_abcd740181246的博客-CSDN博客_anaconda安装caffe

2.安装教程:使用Anaconda创建caffe和tensorflow共存环境_PRIMEZPY的博客-CSDN博客

===================================================================

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不啻逍遥然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值