- 博客(49)
- 收藏
- 关注
原创 Ubuntu 下同名文件替换后编译链接到旧内容的现象分析
在使用 Ubuntu 操作系统编译程序时,常常会遇到一个问题:当我们替换同名文件内容后,若不改变当前命令行目录,再次编译时,系统实际编译的仍是被覆盖前的旧文件内容。
2025-05-30 22:48:14
317
原创 云原生 Cloud Native Build (CNB)使用初体验
体验下来,有几点值得说一说cnb环境启动速度比较快内置了一些镜像加速服务,包下载和Fork速度比较快预装了自家的AI编程助手CodeBuddy,开箱即用后续计划玩一下CNB的流水线功能,看如何利用其自动化能力来优化CI/CD流程。整体来说,CNB作为云原生开发平台,在开发效率和协作体验上都有亮眼的表现,值得持续关注和使用。
2025-05-30 16:36:41
1003
原创 重说话题“如何写好一份技术文档”
在符号学视角下,技术创作本质是符号系统的构建。特征程序代码技术文档载体形式机器可执行的符号人类可读的符号核心功能实现业务逻辑传递设计思想演化规律需要持续重构需要持续更新质量指标性能/健壮性清晰度/完整性技术文档的价值远不止于记录代码逻辑,它是团队协作的基石,是知识传承的载体,更是个人成长的阶梯。当我们摒弃"代码自解释"的幻想,拥抱"文档即代码"的理念时,我们实际上是在构建一个可持续发展的技术生态。
2025-05-29 19:54:53
228
原创 从AI幻觉看我的“意图”与领导说的“万无一失”
AI幻觉是指大语言模型在生成内容时,基于概率分布“猜测”最可能的答案,却产生看似合理但实际错误或虚构的信息。这种现象本质是意图传达与技术实现间的四个主要偏差AI幻觉与“万无一失”的冲突,本质是“概率世界”与“确定需求”的碰撞。所有输出都是草案:无论是AI生成的代码、文案,还是团队内部提出的“完美方案”,都需通过“小范围测试-数据验证-用户反馈”的迭代流程去伪存真;责任需要显性化。
2025-05-28 21:46:21
444
原创 同源“平滑思想”的问题解法:正则化与拉普拉斯平滑
正则化与拉普拉斯平滑,一个是机器学习的“参数约束工具”,一个是概率模型的“分布修正技术”,看似分属不同领域,实则共享“平滑思想”的内核——通过调整目标函数或统计量,对极端情况进行缓和,使模型或分布更接近真实规律。
2025-05-28 11:02:20
1223
原创 线性回归中标准方程法求逆失败的解法:正则化
当设计矩阵XTXX^T XXTX不可逆时,标准方程法因无法计算逆矩阵而失效。正则化通过向目标函数添加惩罚项,将原矩阵XTXX^T XXTX替换为XTXλIXTXλI,使其重新可逆,同时控制模型复杂度,提升泛化能力。对于线性回归任务,掌握正则化方法是解决“矩阵不可逆”问题的关键技术。实际应用中,需根据数据特点选择L1或L2正则化,并通过交叉验证调整正则化系数,确保模型在避免过拟合的同时保持良好的预测能力。
2025-05-28 10:53:42
1108
原创 零概率问题的解法:拉普拉斯平滑
拉普拉斯平滑的核心,是对“现实世界不确定性”的敬畏。数据中没有出现的事件,不代表概率为0;模型的“认知范围”,不应被训练数据局限。当然,拉普拉斯平滑也存在局限性(如当词汇表极大时,α⋅∣V∣α⋅∣V∣可能导致分母膨胀,稀释概率精度),因此在实际应用中,我们常结合其他技术(如Good-Turing平滑、Kneser-Ney平滑)进一步优化。拉普拉斯平滑不仅是“解题方法”,更是理解“用数学建模现实世界”的一种思想方向。
2025-05-28 10:38:54
658
原创 从万有引力到深度学习,认识模型思维
从牛顿发现万有引力定律到现代深度学习的崛起,“模型思维”始终是人类理解世界、解决问题的核心工具。它不仅是科学研究的基石,更是技术创新的底层逻辑。本文将从科学史、技术应用、认知效率等角度,系统阐述掌握模型思维的必要性。
2025-05-26 16:35:56
799
原创 深度学习中的卷积和反卷积
f∗gn∑k−∞∞fkgn−kf∗gnk−∞∑∞fkgn−k翻转平移:卷积核先水平/垂直翻转再进行滑动计算积分变换本质:表征函数f与g重叠部分的乘积积分滑动平均推广:当g为区间指示函数时,卷积即滑动平均数学理论深化:从离散卷积到群上卷积的泛化硬件协同优化:TensorCore对3×3卷积的特殊加速跨领域融合:在药物动力学IVIVC模型中的应用创新“卷积是特征提取的基石,反卷积是想象力的翅膀” —— 计算机视觉领域谚语。
2025-05-26 11:54:25
1734
原创 AI模型:从黑盒到灰盒,还不是白盒
当前的模型(灰盒)通过可解释性技术与流形理论,在性能与透明度间进行权衡取舍,但模型本质仍是局部解释与经验的结合。未来的模型最终要实现全局可验证,也许会从数学理论与新型计算范式(如神经符号系统、可微逻辑推理)切入。
2025-05-23 11:49:34
278
原创 (视觉)分类、检测与分割在不同网络中的设计体现
分类网络:从AlexNet、VGG到ResNet,网络深度不断增加,残差连接的引入解决了深层网络的训练难题,使网络能够学习更抽象和判别性的特征。检测网络:从两阶段的R-CNN系列到单阶段的YOLO系列,网络设计注重平衡精度与速度,ResNet等分类网络常被用作特征提取骨干。分割网络:从FCN、U-Net到DeepLab系列,网络设计强调保持空间信息和多尺度特征融合,跳跃连接和编码器-解码器结构是关键设计。
2025-05-22 13:46:59
800
原创 看AlexNet,ResNet,谈基础网络的进化特点
基础网络的进化围绕特征提取和稳定训练进行,主要说明了2点:纵然是network有黑盒子特性,但是设计和优化的方向依然要朝着精细化的方向走,也许现在它还是个黑盒子,但是未来可能未必,不被证明的东西未必不能走在应用前沿,毕竟实践了;精细的改动会在模型领域得到较大的效果提升,ResNet通过残差学习这一看似简单的结构创新,解决了深层网络训练的世界性难题,证明了在深度学习领域,精巧的设计往往比盲目的堆叠更有效。
2025-05-22 11:51:27
420
原创 分治思想在算法(目标检测)中的体现
分治思想作为目标检测算法的核心设计哲学,已从早期的硬编码分治策略发展为数据驱动自适应分治。其与注意力机制、神经架构搜索等新兴技术的结合,将持续推动目标检测领域的创新发展。
2025-05-20 10:27:47
1044
原创 现在的AI应用距离通用agent差的那点儿意思
从生成力到行动力的跨越,正是当前AI应用与通用Agent之间最关键的那"点儿意思”。Pokee.ai 朱哲清:用 RL 搭建智能体的「骨骼与神经」| AI 产品十人谈。
2025-05-08 12:23:34
952
原创 3中AI领域的主流方向:预测模型、强化学习和世界模型
近年来,人工智能(AI)技术飞速发展,涌现出多种不同的技术路线。其中,预测模型(如大语言模型)、强化学习(RL)和世界模型(World Models) 代表了三种较大影响力的研究方向。文本生成(如ChatGPT、文心一言)机器翻译(如Google Translate)内容推荐(如短视频、电商推荐)游戏AI(如AlphaGo、OpenAI Five)机器人控制(如波士顿动力)自动驾驶(如Waymo、Tesla)视频预测(如预测下一帧画面)机器人仿真(如模拟物理交互)自动驾驶感知(如理解交通场景)
2025-05-08 11:45:19
419
原创 coze搭建workflow,提取url内容插入飞书多维表格
数据流:开始(input:url)→提取文本内容(节点:插件,如下图)→提取目标文本内容(节点:llm)→飞书多维表格(节点:插件,如下图)→结束。1.打开coze,搭建agent,新建workflow,插入完整节点,如下图。添加后,在agent系统提示词中添加调用prompt(以下是我的部分提示词)搭建agent提取网页信息,生成资讯速览记录,插入飞书多维表格。说明:本文描述简单,适合有一定AI工具经验,详细描述可参考。调试成功后,进行发布,工作空间资源库可看到。插入多维表格成功后,可在节点输出出看到。
2025-04-29 17:32:02
505
原创 继续,ima应用
在设置ima为默认web浏览器后,可以直接打开飞书云文档,左边编辑文档,右边用ai助手,直接问答、生成、分析等一揽子处理,但是不能一键插入,希望后期可以。重要的是,这3种页面打开的AI对话框互不干扰,而且左边是信息源,右边是智能分析,上下文互相不污染,使用体验👍👍👍。
2025-04-23 11:49:34
210
原创 n8n和dify,工具角色?什么区别?
两者在AI开发生态中形成互补:n8n擅长连接异构系统构建宏观业务流程,Dify专注释放LLM潜力于垂直场景。企业可根据需求组合使用——例如用n8n调度数据管道,再通过Dify调用数据,通过LLM生成个性化推荐或自动化报告。
2025-04-22 11:07:59
362
原创 用AI无差别转换技术协议到生产工艺
该方案已在某汽车零部件企业试点,成功将新能源电机壳体的工艺设计时间从72小时压缩至18分钟。需根据具体行业需求调整工艺逻辑库参数。
2025-04-09 14:26:01
501
原创 使用cloud studio部构建一个语音交互Agent
默认情况下,Streamlit 只允许本地访问(127.0.0.1),设置为 0.0.0.0 后,允许外部设备(如局域网或公网)通过主机 IP 访问服务。语音交互的优点:语音交互方式提供了显著的用户体验优势,其核心价值在于拉低交互门槛,用户通过自然语音即可完成操作,无需额外学习成本。遇到的问题是,第4步,访问URL一直显示灰色界面,打开浏览器开发者模式,定位问题是websocket访问失败。运行以下代码(端口可自定义,cloud studio 的工作空间未设网络的安全组规则)。构建voice agent。
2025-04-09 14:21:00
377
原创 用MCP打造agentic AI
指通过外部工具、数据或协议(如 MCP)增强大语言模型的能力,现在经常使用的联网搜索、知识库、workflow都属于增强llm的范畴,使得user能够访问实时信息、执行复杂任务或调用特定功能。MCP 定义了一套统一的接口规范(类似 USB-C),允许 LLM 通过 MCP Server 动态发现和调用外部工具(如数据库、API、爬虫等),无需为每个工具定制开发适配器。通过 MCP 协议,AI 能够高效地连接这些组件,实现复杂任务的自主执行和智能化处理。本地数据:访问本地文件系统,获取静态数据。
2025-03-26 10:32:09
911
原创 agent和agentic
这种新型智能体不再是被动执行预设规则的代码工具,是可以具备持续进化能力的认知主体,在医疗诊断辅助领域,Agentic AI已能支持从症状分析到治疗方案建议的辅助流程。系统从机械执行升级为具备自主决策的"数字实习生",在代码生成场景中,智能体不仅能完成预设任务,还能自主发现并修正代码中的潜在bug。Manus系统通过预设的多阶段任务处理框架,构建了可观测的任务执行流程,展示了工作流编排技术的应用能力。工作流技术的技术理念,贴近人类"目标拆解-分步执行-效果验证"的认知范式。
2025-03-25 22:48:20
302
原创 信号频率和信号采样率
物理意义:表示信号每秒完成10,000次周期性变化(周期为0.1ms),与数据点数无关。示例:10kHz正弦波每秒振荡10k次,在未采样时不存在“数据点”。定义:每秒从信号中采集的独立数据点数量,直接决定数据量。1 MSPS = 每秒1,000,000个数据点。1 kSPS = 每秒1,000个数据点。1 SPS = 每秒1个数据点。
2025-03-19 17:29:32
406
原创 llm的可观测性
在校学习的时候,可观测性(控制理论),指系统从统输出信号反推系统内部状态的能力,目的是为了提升系统稳定系统。后来,做项目,编写软件,继承这一理念的有日志、指标、追踪等设计,所图的都是系统稳定运行,和性能优化。随着对llm特性的了解,和AI应用普及的要求,可观测性逐渐向着完整的解决方案发展,llm领域,业内做测试,一般使用请求量、错误率、响应时长做评估。早期如deepseek-R1测评表,
2025-03-17 10:46:35
122
原创 引入方法论的 AI+ 应用设计案例拆解
能够提升生产力的idea还是有一波,要做的好用、有用、能复用,还不能贵。用AI拆一个贴出来。故障分析应用的维度拆解方案(claude-3.7-sonnet)第一阶段:搭建基础数据采集和分析框架第二阶段:构建故障模式库和分析模型第三阶段:开发自动化报告生成和知识沉淀系统第四阶段:优化用户体验和协作机制这一应用方案能够有效支持智能运维和产品维护工作,通过系统化、自动化的方式提高故障分析效率,同时保证分析结果的质量和可用性。第一阶段概要设计对数据采集模块,如何将方法论融入进去。
2025-03-14 14:56:17
625
原创 Cloud Studio 部署gemma3,映射本地端口到域名,进行外部访问
这一套方案是将cloud studio的高性能工作空间做成了ollama service,并将本地ollama的端口映射到了公网域名,可以外部访问。
2025-03-14 13:39:14
464
原创 (claude-3-7-sonnet)2种便捷使用方式
添加到cherry studio,检查,选择模型claude-3-7-sonnet,测试连接成功。,创建令牌,充值(支持wechat、Alipay),复制令牌。左下设置–>模型服务里的O3选项。
2025-03-13 17:10:48
473
原创 拥有一个deepseek cloud workspace后,再去撩一下QwQ 32B
如何将一个通用的工具改造成一个解决自己实际问题的工具,第一步就是把不同有用的信息挖掘出来。这些信息可能藏在企业的数据库里,藏在老板的脑子里,藏在会议纪要里,藏在硬盘里。
2025-03-11 12:39:10
497
原创 拥有一个CloudStudio DeepSeek workspace
云端IDE,内置不同热门服务,分了AI模板、前端开发、后端语言、应用模板等4个维度,每个模板有不同性能配置的工作空间,比如对比其它弹性或者轻量云服务,这些应用开箱即用,不用自己配置,端口访问规则也是配置好的,对于环境配置手残党和不想浪费时间搞环境的很友好。
2025-03-10 15:27:48
479
原创 (有感)李飞飞在巴黎人工智能峰会演讲:关于AI的大部分讨论都充斥着夸大其词和耸人听闻,赶紧放弃强化学习?!Meta 首席 AI 科学家杨立昆喊话:当前推理方式会“作弊”,卷大模型没有意义!
同时自主有不同程度的区分(弱、强),映射到现实世界的眼光里,一个自主性较强的人容易获得世俗意义上的成功。:在文本生成的基础上,显示生成由规则(因果链、逻辑等规则)约束的文本(transormer、CoT、ToT):类似仿生科学的实现路径,拆解–>模仿–>复现,由人工定义和产生的数据喂养一个看起来自主的系统。:人是自主的生物,猫、狗、牛、马、蛇都是自主的生物,拥有生物式自主的特征。:NLP领域的经典场景之一,理解用户输入的问题,生成准确、连贯的答案。AI自由:工具自由(理念驱动),数据自由(事实驱动)
2025-02-21 14:50:28
279
原创 (搭建环境)用win10玩dify:(wsl+ubuntu22.04+docker-desktop)
(搭建环境)用win10玩dify:(wsl+ubuntu22.04+docker-desktop)
2025-02-20 14:24:56
1219
chatgpt-academic自解读分析报告(gpt-4o-mini model,md格式)
2024-08-12
开源的商业价值是什么(相关搜索:操作系统)
2025-04-29
想做个功能模块的知识图谱,推荐个软件
2024-12-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人