
推荐系统
菜鸡的鼻祖
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
FM算法公式推导
一.提出背景设 xix_{i}xi 为特征,yyy 为预测值,假设我们用最简单的线性拟合来预测 yyy 值:y=w0+∑i=1nwixi{y}=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}y=w0+i=1∑nwixi实际中可能 xix_{i}xi,xjx_{j}xj 同时为1时可能是一个很有用的特征,这种组合特征是 xix_{i}xi 和 xjx_{j}xj...原创 2019-12-11 23:00:21 · 3611 阅读 · 0 评论 -
DeepFM模型——理论分析
论文地址:https://arxiv.org/pdf/1703.04247.pdf一.提出背景CTR预估重点在于学习组合特征,包括二阶、三阶甚至更高阶,阶数越高越难学习。论文中指出,无论是低阶特征还是高阶特征,都有它自己的价值,都对推荐准确性有着很大的影响。而如何利用好低阶和高阶的特征,就是DeepFM最大的特点。二.模型比较线性模型(LR):无法提取高阶的组合特征,依赖人工的组合特...原创 2019-12-11 11:10:00 · 732 阅读 · 0 评论 -
深度学习——Embedding层
1.使用嵌入层Embedding的原因使用 One-hot 方法编码的向量会很高维也很稀疏。假设我们在做自然语言处理(NLP)中遇到了一个包含2000个词的字典,当使用One-hot编码时,每一个词会被一个包含2000个整数的向量来表示,其中1999个数字是0,如果字典再大一点,这种方法的计算效率会大打折扣。训练神经网络的过程中,每个嵌入的向量都会得到更新。我们会发现在多维空间中词与词之间有...原创 2019-12-09 16:05:50 · 2595 阅读 · 0 评论 -
推荐经典算法——协同过滤
一.基于内存(用户)的协同过滤算法算法不足:1.扩展性:用户人数和用户个人信息的大幅增加对协同过滤算法带来挑战。2.准确性:一个用户可能买到系统其中不到1%的物品,不同用户之间买的物品重叠性较低,导致算法无法找到一个用户的邻居,即偏好相似的用户。因此,基于最近邻算法的推荐系统可能无法为特定用户推荐任何物品,建议的准确性可能很差。二.基于模型(物品)的协同过滤算法(1)建立模型的常用机器学...原创 2019-03-22 16:17:58 · 895 阅读 · 1 评论 -
隐语义模型(LFM)
一.LFM1.概念: LFM(latent factor model),它的核心思想是通过隐含特征(latent factor)联系用户兴趣和物品。2.提出背景: 除了传统的UserCF和ItemCF推荐方法,还有一种方法是首先对物品进行分类,对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品,即基于兴趣分类的方法。二.基于兴趣分类1.面临的问题:问题a:如何...原创 2019-04-10 19:03:55 · 3086 阅读 · 2 评论 -
反向传播算法理解
1.反向传播训练多层神经网络的原理:http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html原创 2019-04-21 15:22:52 · 259 阅读 · 0 评论 -
推荐系统中的常用评测指标
一.Hit Ratio(HR)1.在top-K推荐中,HR是一种常用的衡量召回率的指标,其计算公式如下:分母是所有的测试集合,分子是每个用户top-K推荐列表中属于测试集合的个数的总和。2.举例: 三个用户在测试集中的商品个数分别是10,12,8,模型得到的top-10推荐列表中,分别有6个,5个,4个在测试集中,那么此时HR的值是 (6+5+4)/(10+12+8) = 0.5。二...原创 2019-06-12 18:16:34 · 1601 阅读 · 0 评论