用于基于脑电图的神经生理学实验的新型 OpenBCI 框架

开放式脑机接口 (OpenBCI) 通过开源硬件和固件,以低成本实现无与伦比的自由度和灵活性。它利用强大的硬件平台和强大的软件开发工具包,创建具有高级功能的定制驱动程序。然而,一些限制可能会显著降低 OpenBCI 的性能。这些限制包括需要更有效地在计算机和外围设备之间进行通信,以及在特定神经生理数据协议下更灵活地进行快速设置。本文介绍了一个灵活且可扩展的 OpenBCI 框架,用于脑电图 (EEG) 数据实验,该框架使用 Cyton 采集板和更新的驱动程序,以最大限度地发挥 ADS1299 平台的硬件优势。该框架可处理分布式计算任务,并支持多种采样率、通信协议、自由电极放置和单标记同步。因此,OpenBCI 系统能够提供实时反馈并控制基于脑电图的临床方案的执行,从而实现神经记录、解码、刺激和实时分析等步骤。此外,该系统还集成了自动后台配置和用户友好的刺激传递小部件。运动想象测试旨在实现在所需延迟和抖动范围内实时传输的闭环脑机接口 (BCI)。因此,该框架为定制化的神经生理数据处理提供了一种颇具前景的解决方案。

关键词:脑机接口、OpenBCI、EEG、驱动程序、分布式系统、神经生理学

1. 简介

利用脑机接口 (BCI),可以通过刺激脑电活动来控制设备,应用范围广泛,包括神经营销和神经经济学 [ 1 , 2 ]、游戏和娱乐 [ 3 , 4 ]、安全 [ 5 ]、操作医疗协议的框架(如认知状态分析)、运动障碍人士的康复 [ 6 ]、精神障碍的诊断和基于情绪的分析 [ 7 ] 等等。据报道,BCI 技术在教育领域的最新进展 [ 8 ]。它包含一套强大的能力,这些能力对于个人积极促进人类发展至关重要,是联合国教科文组织媒体和信息素养 (MIL) 方法的一部分,如 [ 9 , 10 ] 所述。

尽管可用于脑机接口(BCI)神经生理数据采集的技术众多,但脑电图 (EEG) 因其时间分辨率高、成本低、便携性强、对用户的风险低,仍然是从大脑活动中提取相关信息的最常用方法 [ 11 ]。然而,头皮电极存在一些严重的缺点,例如非平稳性、信噪比低和空间分辨率差。此外,实施临床方案需要用户具备足够的技能,因此必须在受控的实验室条件下进行 BCI,例如运动想象 (MI) [ 12 ]。因此,必须有效地集成信号采集、仪器和软件开发程序,以验证大脑神经反应的临床方案。因此,实施具有可接受可靠性的 BCI 框架已成为一项具有挑战性的任务。

表 1全面概述了领先的 BCI 采集系统所提供的关键特性。特别介绍了几个用于 MI 的 BCI 系统:Emotive EPOC+(https://www.emotiv.com/epoc/,2022年 10 月 1 日访问)和 B-Alert x10(https://www.advancedbrainmonitoring.com/products/b-alert-x10,2022 年 10 月 1 日访问)。一般而言,BCI 设计在用于临床用途时应满足以下要求 [13、14、15 ]:( i )以适中的成本实现高质量的脑电图数据采集;(ii) 适用于各种实验设置,允许广泛的处理复杂性和应用程序可扩展性;(iii) 能够将专用软件适应更通用的协议。对于第一种情况,脑机接口通常设计用于执行简单的任务,因此其配置较为简化,包括精简的状态表征、低频数据传输、在头皮上放置少量电极,或降低计算负担的数据处理模块。然而,一些神经生理过程(例如注意力、警觉性、压力和愉悦程度)可能需要脑机接口具备更高的多功能性和更强大的技术,以测量更广泛的大脑活动。此外,临床设备仍然需要实时数据流访问,因为它们通常专用于在线分析[ 16 ]。

表 1.

用于脑机接口 (BCI) 的采集设备。蓝牙 (BLE) 设备的速度通常比射频 (RF) 和 Wi-Fi 通信协议慢。有线数据传输(例如 USB)的传输速率最高。

BCI硬件电极类型频道协议和数据传输采样率开放硬件
Enobio(西班牙巴塞罗那神经电学公司)柔性/湿8、20、32蓝牙250赫兹
q.DSI 10/20(Quasar Devices,美国加利福尼亚州拉荷亚)柔韧/干燥21蓝牙250赫兹–900赫兹
NeXus-32(Mind Media BV,鲁尔蒙德,荷兰)柔性/湿21蓝牙2.048 千赫
IMEC 脑电图耳机(IMEC,比利时鲁汶)刚性/干燥8蓝牙-
Muse(InteraXon Inc.,加拿大安大略省多伦多)刚性/干燥5蓝牙220赫兹
EPOC+(Emotiv Inc.,美国加利福尼亚州旧金山)刚性/湿14射频128赫兹
CGX MOBILE(Cognionics Inc.,美国加利福尼亚州圣地亚哥)柔韧/干燥72,128蓝牙500赫兹
ActiveTwo(Biosemi,荷兰阿姆斯特丹)柔性/湿256USB2 kHz–16 kHz
actiCAP slim/snap(Brain Products GmbH,德国吉尔兴)柔性/湿式/干式16USB2 kHz–20 kHz
Mind Wave(NeuroSky公司,美国加利福尼亚州圣何塞)刚性/干燥1射频250赫兹
Quick-20(Cognionics Inc.,美国加利福尼亚州圣地亚哥)刚性/干燥二十八蓝牙262赫兹
B-Alert x10(Advanced Brain Monitoring, Inc.,美国加利福尼亚州卡尔斯巴德)刚性/湿9蓝牙256赫兹
Cyton OpenBCI(OpenBCI,美国纽约州布鲁克林)柔性/湿式/干式8、16射频/蓝牙/Wi-Fi250赫兹–16千赫是的
在随后的数据处理分析中,采用了三个程序:信号预处理、特征提取和分类/预测推理。还必须加入用于设备和图形用户界面之间控制流的附加模块。在标准 EEG 临床设置中,所有这些组件都是同时执行的 [ 17,18  ] 。此外,BCI 通常不在实时操作系统上运行,这意味着系统资源会影响每个组件。为了克服这一缺陷,可以采用在非实时操作系统上运行多个进程的高性能处理单元。通常,通过在分布式系统中分配计算密集型任务,BCI 的复杂性往往会降低,从而提高系统可靠性和性能 [  19  ] 。然而,使用闭环 BCI 系统分析大脑神经反应意味着数据处理具有更高的复杂性,需要同步以下组件:采集、信号数据库/存储、特征处理(提取和分类)、可视化(时间、光谱和空间)、执行器的命令生成、命令数据库和反馈采集。此外,事件相关电位 (ERP) 协议需要更高精度的设计来实现标记同步,从而要求低且一致的延迟。这些对增强稳定性和处理能力的要求在研究环境中至关重要,因为在研究环境中,集中式系统很容易因意外的计算需求而变慢 [  20  ,  21  ]。

接下来,表 2显示了 BCI 的标准软件工具的示例,这些工具是自主的、独立运行的。针对心理学、神经科学或语言学等特殊应用的解决方案也正在通过专有软件开发。由于数据传输协议的限制以及与有限硬件的兼容性,这种情况往往会阻碍系统的可扩展性 [ 222324 ]。此外,这些专有解决方案可能带来额外的成本、技术专长和开源优势,需要高级编程技能,并且对数据采集的支持有限 [ 25 ]。相比之下,将设计策略与开源组件结合起来可以提高技术接受度,降低创建成本,支持协作开发,并使更广泛的开发人员可以使用 BCI 设计。这种访问和修改硬件和固件的自由为创建具有尖端功能和性能特性的自定义驱动程序提供了充足的机会 [ 2627 ]。然而,表 1中的 BCI 选项中只有一个是开源的。尽管如此,增强基线 BCI 框架的技术特性还需要针对特定​​情境的设计和合适的驱动程序 [ 28 , 29 ]。

表 2.

脑机接口软件。最广泛使用的软件包含免费许可证:GNU 通用公共许可证 (GPL)、GNU Affero 通用公共许可证版本 3 (AGPL3) 或 MIT 许可证 (MIT)。通常,开源工具允许第三方开发人员进行扩展。

脑机接口软件刺激传递设备数据分析闭环可扩展性执照
BCI2000(版本 3.6,2020 年 8 月发布)是的一大套在软件中是的是的通用许可证
OpenViBE(版本 3.3.1,2022 年 11 月发布)是的一大套在软件中是的是的AGPL3
神经行为系统演示(版本 23.1,2022 年 9 月发布)是的有官方名单在软件中是的是的所有权
Psychology Software Tools, Inc. ePrime(版本 3.0,于 2022 年 9 月发布)是的仅限专有设备在软件中是的所有权
EEGLAB(版本 2022.1,2022 年 8 月发布)由 Matlab 确定系统Matlab-所有权
PsychoPy(版本 2022.2.3,2022 年 8 月发布)是的是的通用许可证
FieldTrip(版本 20220827,2022 年 8 月发布)系统Matlab是的通用许可证
Millisecond Inquisit Lab(版本 6.6.1,2022 年 7 月发布)是的串行和并行设备所有权
Psychtoolbox-3(版本 3.0.18.12,2022 年 8 月发布)是的由 Matlab 和 Octave 确定-麻省理工学院
OpenSesame(版本 3.3.12,2022 年 5 月发布)是的由 Python 决定系统 Python是的通用许可证
NIMH MonkeyLogic(版本 2.2.23,2022 年 1 月发布)是的由 Matlab 确定所有权
基因工程系统是的仅限专有设备系统Matlab所有权
OpenBCI GUI(版本 5.1.0,2022 年 5 月发布)仅限专有设备是的麻省理工学院
在此,我们提出了一个全新的 OpenBCI 框架,旨在满足更广泛的 MI 协议的需求,该框架包含三个组件:(i) 针对 OpenBCI 增强的采集驱动程序,通过封装供应商 SDK 的 Python 模块提供高级功能,例如分布式和异步数据采集;(ii) 一种分布式系统策略,通过精确同步标记点并允许同时采集数据来消除 BCI 实验中的延迟;(iii) 一个框架接口,用于将功能齐全的 BCI 集成到单个应用程序中,从而简化部署流程并减少潜在的故障点。OpenBCI 框架可自动创建即用型数据库,简化测试和设计流程,增强可重复性并加快调试速度。此外,还提供了自动标记点同步功能,以改进将多个系统的各种功能集成到单个系统中的能力。针对 MI 范式进行的实验测试结果证明了其有效性,包括二进制反序列化、数据传输完整性和延迟、EEG 电极阻抗测量以及标记点同步。

本文的其余部分安排如下:第2节介绍了我们开发过程中集成的方法和软件工具。第3节第4节描述了基于OpenBCI工具的运动想象范式示例的实验设置和结果。最后,第5节概述了结论和未来工作。

2.材料和方法

所提出的基于 OpenBCI 的框架包括三个步骤:(i)开发自定义驱动程序以优化系统性能;(ii)驱动程序集成到分布式系统中以提高可访问性和可用性;(iii)作为主界面提供的 BCI 实用程序的高级实现,提供用户友好的体验。

2.1. OpenBCI:硬件和软件组件的基础知识

OpenBCI 是一种高度灵活的开源硬件选项,适用于生物传感应用 [ 30 ]。该板可以处理脑电图 (EEG) 信号,并支持肌电图 (EMG) 和心电图。此外,如 OpenBCI Cyton(https://openbci.com/,访问日期:2022 年 10 月 1 日)中所述,该生物传感板配备 PIC32MX250F128B 微控制器、ChipKIT UDB32-MX2-DIP 引导加载程序、LIS3DH 三轴加速度计和 ADS1299 模数转换器,该转换器具有八个输入通道(可扩展至 16 个),最大采样率为 16 kHz(如图1所示)。EEG 通道可以配置为单极或双极模式,最多可添加五个外部数字输入和三个模拟输入。传输控制协议 (TCP) 也可以通过 Wi-Fi 接口访问数据流。表 3总结了 OpenBCI 的主要配置。另一个选择是 RFduino,它默认支持每秒 250 个样本 (SPS) 和 8 个通道。但是,添加 Daisy 模块后,它可以扩展到 16 个通道,使用 Wi-Fi 屏蔽后,采样率可以提高到 16 kHz。值得注意的是,整个电极蒙太奇可配置为单极、双极或顺序模式。Cyton 板配备了与 Python 兼容的驱动程序(https://github.com/openbci-archive/OpenBCI_Python,2022年 10 月 1 日访问),但现在已被弃用,取而代之的是 BrainFlow 提供的新的、与电路板无关的系列(https://brainflow.org/,2022年 10 月 1 日访问)。通过开发特定于电路板的驱动程序,电路板的低级功能将通过高级配置集成到其最终版本中。计算机板通信只是偶尔可靠,并且其 GUI 不允许在特定参数下采集数据。然而,OpenBCI 板的硬件和软件开发套件(SDK)提供了实现与医疗级设备相当的完整框架的潜力[ 31 ]。

图 1.

图 1

OpenBCI 系统配备 Daisy 扩展板和 WiFi 屏蔽,最多可支持 16 个通道和 8 k SPS。它还包含一个带有导电凝胶的 EEG 帽,以提高导电性。

表 3.

OpenBCI Cyton 配置使用 Daisy 扩展板和 Wi-Fi 屏蔽。

OpenBCI Cyton频道数字输入模拟输入最大采样率特色协议
RFduino853250赫兹串行
RFduino + Daisy1653250赫兹串行
RFduino + Wi-Fi 屏蔽82116千赫TCP(通过 Wi-Fi)
RFduino + Wi-Fi 扩展板 + Daisy16218千赫TCP(通过 Wi-Fi)
2.2. OpenBCI 的高级采集驱动程序

OpenBCI 提供两种主要的连接模式与计算机通信。默认连接为串行,计算机通过使用专有 RFDuino 接口的 USB 适配器将开发板识别为串行设备。它包含一个经过蓝牙改进的协议,旨在实现高数据传输速率。使用此接口,八通道的最大采样率为 250 Hz。计算机与开发板之间的通信基于简单的读写命令,计算机从开发板读取指定数量的字节或将指定数量的字节写入开发板。这种简化的通信协议可以轻松与各种软件应用程序集成。除了串行接口外,OpenBCI 系统还提供使用 Wi-Fi Shield 将采样率提高到 16k Hz 的选项。然而,这些高采样率对于 BCI 应用来说可能更实用,并且更容易处理 1-2 kSPS 的速率。此外,Wi-Fi 连接支持消息队列遥测传输 (MQTT) 和 TCP,其中 TCP 因其简单性而成为首选。 OpenBCI 基于 ADS1299,这是一款德州仪器 (TI) 专为生物电测量设计的 24 位模数转换器。它基于 ChipKIT 开发平台及其相关固件构建而成。OpenBCI 基于 Python 的 SDK 定义了基于 Unicode 字符交换的指令集。该指令集扩展了系统在 Wi-Fi 模式下的功能。此外,用于与开发板通信的协议是串行协议(用于 USB 加密狗)和 TCP 协议(​​用于 Wi-Fi 接口)。图 2展示了所提出的跨平台驱动程序的架构,首先构建于 OpenBCI SDK 支持的底层功能之上。图中的蓝色框表示这些底层功能,它们是开发更复杂功能的基本构建块。SDK 的底层功能包括提供访问原始 BCI 数据以及主要信号处理和特征提取技术的工具和功能。在驱动程序的顶层,由绿色框表示的主接口提供对各种 BCI 应用所必需的一系列高级元素的访问。这些高级功能包括数据存储、标记同步和阻抗测量。例如,数据存储功能可确保海量数据的安全有序存储,并保持标记的实时同步。同样,阻抗测量功能对于测量脑电图电极与头皮之间的阻抗至关重要,可确保信号质量。我们提出的跨平台驱动程序旨在跨不同平台提供一致且统一的接口,使开发人员只需编写一次代码,即可在多个平台上以最少的修改运行。

图 2.

图 2

高级采集驱动程序。我们的架构将硬件功能与 OpenBCI SDK 连接起来,以访问所有配置模式,从而形成一个具有低级功能(以蓝色框表示)的跨平台驱动程序。外部系统将利用这些功能来部署特定于上下文的高级功能。

  • 选择一个二进制数据块。

  • 将偏移数据添加到块的前面。

  • 找到字节头0xa0,并将该字节作为第一个元素,其余33个字节(此时数据为一个最大长度为33个元素的数组列表)进行分片。

  • 裁剪二进制数据块以确保所有元素的长度为 33,并存储偏移量以完成下一个块。

  • 创建一个形状为 (33,N) 的矩阵。现在,形状为 (33,N) 的数据结构必须满足一组条件:所有前列必须包含 0xa0 值;第二列必须是增量的,最后一列必须采用 0xcX 格式,且包含相同的值。任何不符合这些规则的行都必须被删除。

我们分别执行数据采集和反序列化以确保合适的结构。该模块实现了一个用于访问数据的多处理队列。传输格式可以配置为 RAW、二进制或使用 JavaScript 对象表示法 (JSON) 格式化,后者的优点是已经反序列化,但缺点是包大小可变。值得注意的是,RAW 解决了包大小问题,但需要反序列化过程。尽管如此,RAW 仍然是可行的,因为它传输速度快,易于检测丢失的数据包。主要的脑电图记录以 24 字节写入,压缩了 8 个通道的 24 位有符号数据。这种转换对 Python 来说具有挑战性,因为没有原生的 24 位有符号格式。因此,已经实现了一种特定的格式,以使用相同数量的传输数据来解释 16 个通道。此外,Cyton 和 Daisy 传输是交错的,空块使用来自同一板的最后两次传输的平均值填充。上述过程如表 4所述。获取二进制数据后,需要进行反序列化过程。该过程包括将字节转换为具有物理单位的值,即𝜇⁢𝑉表示脑电图 (EEG),g表示加速度。一旦启动流,连续的二进制数据流就会存储在基于队列的结构中。然后,处理样本以提取脑电图 (EEG) 和辅助信息。最后,必须执行几个步骤来反序列化二进制代码包:图 3以图形方式展示了如何清理和情境化损坏的数据集以反序列化主要结构。值得一提的是,OpenBCI 系统允许自定义辅助数据,默认情况下设置为加速度计测量。但是,可以使用三种信号类型:数字、模拟和标记。在标记模式下,可以将特定值编程到时间序列中,而在数字和模拟模式下,可以通过物理端口输入信号。除了脑电图信号之外,获取外部信号的能力是一个关键属性,因为它使系统能够测量延迟值。之后,所提出的高级驱动程序利用 OpenBCI 配置,如表 5所示。

表 4.

16通道EEG数据包格式。

已收到上采样板数据上采样 Daisy 数据
样品(3)平均值[样本(1),样本(3)]样品(2)
样品(4)样品(3)平均值[样本(2),样本(4)]
样品(5)平均值[样本(3),样本(5)]样品(4)
样品(6)样品(5)平均值[样本(4),样本(6)]
样品(7)平均值[样本(5),样本(7)]样品(6)
样品(8)样品(7)平均值[样本(6),样本(8)]
图 3.

图 3

提出了基于 OpenBCI Cyton 的数据块反序列化方法。数据反序列化必须保证数据上下文,以避免后续转换中出现溢出。第一列(例如第 2 列至第 26 列)包含脑电图数据,其余列(例如第 26 列至第 32 列)包含辅助数据。

表 5.

OpenBCI Cyton 配置使用 Daisy 扩展板和 Wi-Fi 屏蔽。

OpenBCI Cyton频道数字输入模拟输入最大采样率特色协议
RFduino853250赫兹串行
RFduino + Daisy1653250赫兹串行
RFduino + Wi-Fi 屏蔽82116千赫TCP(通过 Wi-Fi)
RFduino + Wi-Fi 扩展板 + Daisy16218千赫TCP(通过 Wi-Fi)
2.3. 固定延迟的分布式系统

所引入框架的实时能力是根据采样块的传输来定义的。值得注意的是,我们的方法保证了持续时间为P 的EEG 数据块将在短于P 的时间内准备就绪,而不管该块的持续时间如何 [ 32 ]。这个定义对于比较不同的系统布置以及评估采样率、通道数、协议和数据块传输的灵活性是必要的。此外,在设计和开发 BCI 时,延迟以百分比表示,以便简化系统能力的比较。此外,如图 4所示,由于所提接口的分布式特性,延迟的测量过程需要跨多个系统进行异步测量。

图 4.

图 4

整个分布式数据采集和处理系统中数据块的组成。完整的延迟测量必须考虑所有数据传播的系统。准确的测量需要反馈和比较。

我们分布式系统的骨干是 Apache Kafka,这是一个用于构建实时数据管道和应用程序的强大平台。它能够管理大量高吞吐量数据,使用主题字符串标识符的简单协议,并且能够处理实时数据流,使其成为许多需要实时处理和响应能力的应用程序的理想解决方案。因此,使用单个服务器可以消除冗余的消息分配和触发,从而进一步加快消息传输速度。此外,一个名为 Kafka-Python 的 Python 包装器(https://kafka-python.readthedocs.io/en/master/,访问日期:2022 年 10 月 1 日)的可用性增强了 Apache Kafka 的多功能性。正如脑机接口系统中脑电图 (EEG) 数据的实时流式传输所证明的那样,Apache Kafka 对实时处理和响应能力的适用性显而易见。

为了开发分布式数据采集,建议使用搭载最低 Linux 发行版(例如 Archlinux ARM 或 Manjaro ARM Minimal)的单板计算机 (SBC),并只运行必要的进程和守护进程(包括 Apache Kafka 服务器),并采用专用操作系统。系统启动后,将作为实时协议 (RTP) 服务器和 Wi-Fi 接入点运行,Apache Kafka 服务器将在后台启动。接下来,二进制反序列化器守护进程开始监听二进制数据,EEG 流处理器监听反序列化记录,远程 Python 调用 (RPyC) 服务器开始封装驱动程序。RPyC 在此设置中不可或缺,因为它提供了一个透明、对称的 Python 库,用于远程过程调用、集群和分布式计算。它使 Python 代码在远程或本地计算机上的执行如同在本地执行一样,从而方便本地和远程使用。此外,RPyC 还使采集服务器能够高效地访问 EEG,同时允许执行 Python 代码。此外,RPyC 即使在远程处理时也能实现快速计算。数据可以轻松地从采集服务器传输到处理服务器,从而确保整个系统的顺畅运行。与处理大量高吞吐量数据并提供实时处理和响应能力的 Apache Kafka 不同,RPyC 在两个 Python 进程之间建立连接,并远程访问/控制对象。

整体架构如图5所示,展示了各个组件以及它们与其他消息协议的交互。该架构包含三个数据传输系统:PyC、Kafka 和 Websockets。黄色框中突出显示,Kafka 对于维护整个架构的分布式通信系统至关重要。绿色框表示其他系统,用于执行不需要快速传输或终端间通信的任务。蓝色框表示所有终端在独立的计算单元上执行特定任务。如果一个终端需要另一个终端的信息,Kafka 会高效可靠地传输信息,确保终端之间的无缝通信。

图 5.

图5

使用 Apache Kafka 实现的分布式系统。图中展示了实时数据的生成和使用,以及利用 Websockets 执行其他任务的系统中介。蓝色块表示可跨不同进程或计算设备独立执行的任务。Apache Kafka 的实现充当各个组件之间的中介,实现无缝高效的信息流。绿色块表示与 Apache Kafka 不同的客户端-服务器通信协议。

2.4. BCI框架接口

所提出的 BCI 框架是一个功能强大的桌面应用程序,旨在在一个单一、用户友好的平台上提供完整的基于脑电图 (EEG) 的 BCI 系统。该框架完全使用 Python 开发,并基于 PySide6(PySide 库的最新稳定版本)构建了 GUI。同样,我们使用开源库和免费软件,这有助于确保框架的可扩展性和可重构性,使用户能够快速调整软件以满足其特定需求。该软件采用模块化架构设计,几乎所有组件都可以独立运行,并通过 Websockets 或简单的 HTTP 请求与主界面进行通信。此外,我们的策略针对 OpenBCI Cyton 开发板进行了优化,为可靠的脑电图数据采集提供专门支持。这种优化使运行框架的主机能够将其所有资源分配给数据可视化、处理和刺激传递,从而确保整个系统的数据流顺畅。我们使用后台服务来运行独立的任务,其中一些进程由框架内部启动,另一些则由框架外部启动。这些服务根据优先级或传输的信息使用 Kafka 或 WebSockets 进行通信。这种分布式网络架构有助于确保所提出的 BCI 工具高效可靠地运行。所开发的 BCI 框架的数据分析由 Python 及其丰富的科学计算模块提供支持。事实证明,Python 编程适用于开发神经科学应用程序。此外,许多模块(如 MNE(https://mne.tools/,2022年 10 月 1 日访问))是专门为探索和分析人类神经生理数据而设计的。Numpy(https://numpy.org/,2022年 10 月 1 日访问)和 Scipy(https://scipy.org/,2022年 10 月 1 日访问)中的程序可用于实现自定义分析,Scikit-learn(url https://scikit-learn.org/,2022年 10 月 1 日访问)和 TensorFlow(https://www.tensorflow.org/,2022年 10 月 1 日访问)可用于实现机器和深度学习方法。

我们的框架允许通过快速访问脑电图 (EEG) 信号和标记来构建脑机接口 (BCI) 系统,而无需担心采集、同步或分发。这种方法允许将实时分析实现为基本的 Kafka 消费者或转换器,它可以连接到脑电图流并使用数据来满足用户需求、生成报告、执行本地命令或将更新的数据发送回脑电图流。可视化的工作原理类似,只是它们仅限于 Kafka 消费者,因为它们旨在通过 HTTP 在 BCI 框架界面内显示,而不是创建新的数据流。实时可视化包含一个计算过程,该过程通过操作数据来创建和更新静态可视化。可视化环境自动为实时脑电图流提供服务,使用户只需专注于可视化。至于刺激传递接口,它是唯一与 BCI 受试者直接交互的接口。神经生理学实验需要一个受控环境来减少信号中的伪影,并使受试者专注于其任务 [ 33 , 34 ]。因此,必须通过远程演示系统传递刺激,该系统将受试者与用户在物理上分开。选择用于开发具有这些功能的环境的方法是基于 HTML、CSS 和 JavasScript 的经典 Web 应用程序 Brython-Radiant 框架(https://radiant-framework.readthedocs.io/ 于 2022 年 10 月 1 日访问)。虽然这是几乎所有神经生理学实验的共同特征,但经过一系列观察和获取数据库的经验,我们提出了一个全新的环境,用于设计、实施和配置视听刺激传递。我们的界面允许用户设计灵活的实验并快速轻松地更改参数,而无需重新编程范例。此外,由于采集接口集成到框架中,因此会自动创建包含所有相关元数据和同步标记的数据库。然后,用户只需担心实验,而数据库则在第二个平面上生成。

图 6概述了我们基于 OpenBCI 的框架,该框架将三个关键组件集成到一个统一的系统中,与传统的 BCI 系统截然不同,在传统的 BCI 系统中,这些组件通常是独立的,并且互连性较差。我们的工具的三个组件是 OpenBCI 驱动程序、分布式功能和高级接口。简而言之,我们的高级接口提供了一系列功能,包括数据分析、实时可视化、刺激传递和集成开发环境 (IDE)。这种集成产生了一个统一的应用程序界面,其功能只有通过组件之间的协同关系才能实现。这些功能包括创建情境化数据库、实时分类、闭环实现、低延迟神经生理范例的设计和实时可视化。最后,我们框架的多种配置和功能在 BCI 框架文档 ( https://docs.bciframework.org/,2022 年 10 月 1 日访问) 中都有在线文档。

图 6.

图6

基于 OpenBCI(硬件/软件)和脑电图记录的 BCI 工具方案。我们的方法实现了端到端的应用。此外,这一特性之间的协同作用使得我们能够在灵活的开发环境中实现将数据采集与刺激传递相结合的高级功能。黄色问题与 OpenBCI 自定义驱动程序的开发相关,绿色问题与分布式系统集成相关,蓝色问题与通过主界面提供的实用程序的高级实现相关。

3. 实验设置

我们在脑机接口 (BCI) 领域开展了一项经典实验,以展示新提出的基于 OpenBCI 的框架,特别是运动想象 (MI) 范式的功能。该实验旨在展示我们工具的优势,包括数据采集、信号处理和动态可视化。该测试的最终目标是建立一个强大的数据库,以支持进一步开发离线处理阶段,并将其无缝集成到实时反馈应用的软件中。此外,通过在成熟的实验中成功测试我们框架的使用效果,我们旨在证明其在各种脑机接口 (BCI) 任务中的多功能性、可靠性和实用性。

3.1. 测试的BCI范式:运动想象

想象运动是指在不实际执行的情况下想象某个运动动作。例如,在进行想象运动任务时,参与者会在脑海中想象一个特定的运动动作,例如移动右手,但不会实际执行。动作的规划和执行会激活感觉运动区域的特征节律,例如𝛼(8-12赫兹)和𝛽(13–30 Hz)[ 35 ]。研究与 MI 相关的脑动力学对各个领域都有重要意义,包括评估病理状况、运动功能康复以及运动学习和表现 [ 36 ]。因此,能够解码 MI 相关模式(通常通过 EEG 信号捕获)并将其转换为控制外部设备的命令的 BCI 在文献中受到了广泛关注 [ 35,37 ]。然而,这些系统广泛应用的一个重大限制是大约 15 % –30% 的用户需要帮助才能控制界面,因为他们在 MI 反应期间不会表现出与任务相关的特定感觉运动节律变化 [ 38 ]。

为了进行具体的测试,我们基于线索的 MI 范式包含最多两个不同的运动想象任务,用具有异步中断的一系列线索(箭头形)表示。该范式使用指向左侧和右侧的箭头,该箭头在先前的研究中已经得到充分证实和广泛应用 [ 39,40 ] 7描绘了单次 MI 试验的时间线。它突出显示了系统使用标记捕获事件的确切时刻,这些标记将被集成到 EEG 信号时间序列中进行分析。这项试验只是对参与者进行的众多试验之一,旨在使用我们基于 OpenBCI 的方法构建他们在执行 MI 任务期间大脑活动的综合数据库。

图 7.

图 7

测试了基于 OpenBCI 的框架的运动想象范式标记指标。

3.2 方法比较与质量评估

大多数脑机接口 (BCI) 实验高度依赖于数据采集质量。事实上,数据采集阶段至关重要,因为系统必须以高精度运行,例如确保标记点同步。在此阶段,必须通过分析随时间变化的脑电信号来确定参与者接受刺激的精确时刻。此外,在实验的调试阶段,必须进行多项检查,以验证电极位置和通信稳定性,并验证所收集数据的完整性。这些过程可能会给系统带来挑战。然而,识别和解决问题的最简单方法是实时地在时域和频域中对数据进行可视化。

此外,大多数方法需要多种软件工具,因此很难比较结果。为了准确评估系统性能,延迟和抖动是最相关的指标 [ 41,42 ]。然而,由于不同采集系统的采样率不同,有必要将这些量表示为采集数据块持续时间的百分比。例如,如果传输一个 100 毫秒的采集块需要 75 毫秒,则延迟将表示为 75%。这里,延迟是指从开发板采集原始脑电图与其在开发框架中可用之间的时间差。此分析是在具有以下条件的完全分布式系统上进行的:

  • OpenBCI 采集系统安装在专用的 SBC 中,具体选择了 Raspberry Pi,因为它易于使用,并且易于转换为专用系统 [ 4344 ]。

  • 使用开发的驱动程序在远程计算机中读取数据。

  • 根据延迟分析结果,块大小固定为 100 个样本。

  • 根据延迟分析结果,每秒样本数固定为 1000。

此外,该系统设计为始终与主要 EEG 数据一起注册和传输。这方面使开发人员无需配置特定模式即可执行延迟分析。这意味着可以使用与 EEG 采集会话相同的条件进行延迟分析。图 8展示了为本研究实施的实验基础设施。Raspberry Pi 卡配置为采集服务器和接入点,提供与 OpenBCI 采集系统的直接连接并减少和稳定延迟。标记同步、实时数据可视化和实验范式配置系统可以在连接到网络的任何节点上执行,无论是通过有线连接还是通过 Raspberry Pi 建立的接入点以无线方式连接。为了最大限度地减少采集数据通道的拥塞,本实验中的所有其他节点都通过有线连接进行连接。

图 8.

图8

实施运动想象实验。实验装置采用专用无线信道采集数据,并通过有线连接实现分布式系统,包含实时可视化、标记同步、范式配置和刺激传递等功能。

4.结果与讨论

4.1 脑电图电极阻抗测量

电极-皮肤界面的阻抗是生物电势测量中需要考虑的一个重要因素,因为它会显著影响信号质量。建议保持低阻抗电极皮肤,以确保低放大水平,即使低于ADC的分辨率也是如此。我们基于OpenBCI的方法使用ADS1299 ADC进行生物电势测量,其中包括一种使用导联脱落电流源测量阻抗的方法。该方法包括以31.2 Hz的频率注入6 nA的小电流,并处理所得信号,利用欧姆定律计算阻抗。然而,阻抗测量可能会受到非平稳信号的影响,例如在放置或操作电极期间。因此,建议留出休息时间并遵循最佳实践,例如采集短而充足的信号并去除非平稳片段,以提高阻抗测量精度。我们可以利用高级驱动器来生成一个基础实验的结果,该实验操作了一个10 KOhm的电位器,如图9所示,该实验展示了测量阻抗如何在设备范围内缓慢波动。对于实际的皮肤电极阻抗测量,必须根据电极阻抗和 ADC 的输入阻抗确定一个可接受的范围,以减少阻抗引起的幅度变化并保持可比的数据通道。

图 9.

图 9

通过改变 10 KOhm 电位器获得实时阻抗测量结果。

4.2. 基于延迟分析的结果比较

图 10比较了我们基于 OpenBCI 的工具在测试的 MI 范式中的四个相对时间戳和块持续时间。二进制时间表示从获取原始数据到通过 Kafka 流式传输所经过的时间。同样,二进制消耗时间表示从二进制数据被消耗到反序列化所经过的时间。生成时间反映了传输持续时间,即脑电图数据插入 Kafka 流到最终消费者读取所需的时间。需要注意的是,零值和脑电图生成值之间的差异包含了时钟偏移。因此,二进制消耗值和脑电图生成值之间的时间包含了反序列化原始数据的时间间隔。相反,二进制生成值和块持续时间之间的时间表示 OpenBCI 采集系统通过 WiFi 协议运行时的延迟。此外,值得一提的是,高效准确的脑电图数据采集至关重要。

图 10.

图 10

固定 100 个样本块大小和 1000 SPS 的延迟分析。延迟显示从读取数据包到打包所用的时间。虚线表示最小延迟,阴影表示所有段的标准差。

根据反序列化的结果,该过程需要很长时间。如图 11所示,当对六种不同的块大小执行相同的过程同时保持相同的 1000 SPS 时,对于低于 1000 个样本和高达 100 个样本的大小,延迟似乎呈线性。当以百分比表示时,延迟稳定在 50% 左右。但是,抖动越大,块大小越长。该结果表明,使用开发的驱动程序进行 EEG 采集的最佳配置是块大小为 100 个样本,抖动仅为 8 毫秒。图 10显示了当采集的数据经过不同的转换和传输阶段时,延迟离散度或抖动如何增加。该图可用于计算关键任务之间的时间。原点 (0) 和红线之间的距离对应于 EEG 信号通过 Kafka 的传输时间。红线和橙线之间的距离表示数据从二进制转换为十进制的反序列化时间。此外,橙线和绿线之间的距离表示二进制数据的传播时间,从在 OpenBCI 上生成到添加到 Kafka 流,包括通过 WiFi 协议传输的时间。蓝线对应于每次迭代中每个读取周期的间隔。对于此实验,系统整体延迟可以计算为红线到绿线的距离,约为 56 毫秒。

图 11.

图 11

延迟与块大小结果。左图:对于较小的块大小,延迟与块大小成正比。右图:对于较小的块大小,延迟降低,但对于较大的块大小,其标准差(抖动)增加。由于抖动较低,100 个样本块大小是首选配置。

值得注意的是,我们的 BCI 与传统系统的区别在于,我们的实验无需组合系统或第三方应用程序。如表 6所示,在具体实验之间进行比较时,这种限制强调了评估整体完整性而非单个阶段的重要性。提供的延迟分析结果揭示了有线系统在抖动较低方面优于无线系统的性能。此外,集中式实现(如 BCI2000 + g.USBamp)的延迟会根据所使用的范例而变化,即使配置相同也会导致不同的延迟响应。这些发现强调了仔细考虑 BCI 的配置和实现的必要性,以确保最佳性能和预期结果。尽管如此,即使在无线实现下,我们的 OpenBCI 工具也能提供合适的采样率和可接受的抖动水平。此外,我们的方法为低成本、分布式、开源框架保持了可接受的延迟,为基于 EEG 的应用程序提供了经济高效的解决方案。

表 6.

方法比较结果的延迟分析。延迟以块大小的百分比表示,以便于比较不同的配置。

脑机接口系统采样率块大小抖动沟通分布式延迟
BCI2000 + DT3003 [ 45 ]160赫兹6.35 毫秒0.67 毫秒有线51.9%
BCI2000 + NI 6024E [ 45 ]25 千赫40毫秒0.75毫秒有线27.5%
BCI2000 + g.USBamp [ 32 ]1200赫兹83.3 毫秒5.91 毫秒有线14、30、48%
OpenViBE + TSi Porti32 [ 46 ]512赫兹62.5 毫秒3.07 毫秒光复用器100.4%
OpenBCI 框架(我们的)1000赫兹100毫秒5.7 毫秒无线的是的56

4.3. 采样分析

反过来,为了进行采样分析,以 250 SPS 的采样率记录 64 分钟连续的 EEG 信号,块大小为 100 个样本和 16 个通道。EEG 通道补充了在信号测试模式下配置的辅助数据,从而启用了方波信号发生器。为了便于离线分析,所有通道均已保存。具体而言,为了确保采样率的准确性,有必要拒绝由传输协议导致的采集毛刺的试验。采用三种方法来检测这些问题:(i) 分析时间戳向量以检测步骤中任何指示缺失数据的偏差;(ii) 利用 ADS1299 SDK 中的方波信号发生器功能,通过观察辅助数据中脉冲序列的变化来检测传输失败;(iii) 检查由循环增量标志组成的样本索引,以检测将导致序列中出现重复或缺失值的缺失或重复数据。

图 12比较了三种检测传输故障的方法,并展示了它们的有效性。如图所示,这三种方法都能有效地识别 64 分钟信号中的传输故障点。然而,由于样本索引法简单高效,因此更受青睐。缺失的样本将被识别并标记为“BAD:样本”,以供进一步检查。建议移除每次检测周围的部分样本,以解释传输故障点聚集的趋势。后者可确保所有包含这些标记之一的试验都被排除在分析之外。识别并移除有缺陷的试验后,即可计算样本采集率。图 13比较了剔除被指定为 BAD 样本的标记前后的采样率。左列显示未校正采样差异的数据,右列显示丢弃已识别的 BAD 样本后的数据。右列的数据更加精细且易于解释,因为它突出显示了毫秒样本之间的周期差异。图中顶部的图表示周期差,其中一条实线标记预期的 4 毫秒(1/250 Hz),另一条辅助线标记上下均匀分布的 50 毫秒。移除“BAD:样本”标记周围的样本后,底部的图描绘了每个结果片段的平均周期。

图 12.

图 12

采样丢失检测结果。可以通过分析时间戳、使用测试信号或分析样本索引来检测采样丢失。左列以蓝色突出显示完整的时间序列,其中区域突出显示。右列放大显示部分样本的不规则性。

图 13.

图 13

去除不良标记后的采样率分析结果。去除不良标记后的采样率分析表明,数据周期采集接近 4 毫秒 (250 SPS)。

4.4. 界面说明功能

我们的界面包含多项旨在设计、开发和调试的功能。值得注意的是,它允许在测试范式中监控事件标记的同步。在分布式执行环境中同步事件标记可能会导致脑电图信号与刺激呈现时略有延迟。这种偏移可能不会影响许多脑机接口范式,但对于事件相关电位和运动想象等需要小于 10 毫秒差异的范式来说,可能会造成问题。为了解决这个问题,我们建议通过实现一个连接到 OpenBCI 引脚 D11(或 A5)并配置为模拟模式采集的光敏电阻 (LDR) 模块来同步标记。因此,我们会在实验过程中计算对平均延迟的单一校正,利用框架中设计的低延迟变异性。主界面包含一个自动校正程序,可在系统内计算和校正此延迟。校正在刺激传递过程中进行,仅对使用的区域进行标记同步。 LDR 模块持续感知方波信号的变化,并将其与流式传输的标记进行比较。图 14展示了针对一系列模拟标记执行的计算,以实现 0 毫秒的平均系统延迟。此外,LDR 可以应用于每个事件,确保在每次事件发生时都能精确定位标记。需要注意的是,LDR 模块必须在整个实验过程中保持连接。图 15展示了这种基于试次的校正方法在两类 MI 记录(例如左脑和右脑)中的实现。最后两张图展示了全局延迟和基于试次的校正之间的对比。

图 14.

图 14

OpenBCI 框架实现实时界面内的标记同步。

图 15.

图 15

自动标记同步结果。上图显示了 LDR 生成的信号。第二图可视化了系统中的延迟。第三图显示了使用相同调整值校正所有延迟后的情况,最终图表已针对每个标记单独调整了延迟。

接下来,图 16展示了 EEG 电极阻抗的拓扑可视化,涉及我们的 OpenBCI 框架小部件。如图所示,它通过显示阻抗值及其所属的确切电极和通道,方便了电容的调整和检查。同样,实时可视化采集的信号是 BCI 实验的一个重要方面,因为它能够检测到网络连接或特定电极的任何潜在问题。如图 17所示,我们的 BCI 系统中的 IDE 提供了强大的 EEG 可视化功能,包括时域和频域。此外,使用 IDE 还可以轻松创建自定义可视化,以满足实验的特定需求。

图 16.

图 16

实时阻抗可视化工具的界面小部件。我们的 MI 范式中使用了 16 通道 OpenBCI EEG 电容。

图 17.

图 17

时间和频率自定义数据可视化。左侧显示信号滤波范围为 5 Hz 至 45 Hz;右侧显示带宽范围为 1 Hz 至 100 Hz 的通道频谱可视化。

此外,我们的 IDE 还配备了用户友好的应用程序编程接口 (API),方便用户轻松创建自定义可视化效果。因此,用户可以更专注于操作输入数据,而无需担心采集参数或信号传输。例如,图 18展示了入门级 MI 试验的组成,并展示了流程系统的稳定性,确保了每次测试之间的间隔。𝑇⁢0−𝑇⁢1,𝑇⁢1−𝑇⁢2, 和𝑇⁢2−𝑇⁢3尽管视图执行存在波动,但所有执行结果均保持一致。最后,图 19展示了用于创建简单运动想象实验的 IDE 界面。该环境包含代码编辑区域、设计界面预览、文件浏览器和调试控制台。开发完成后,该界面可以单独执行,并通过可通过任何浏览器部署的特​​定 IP 向患者提供远程刺激。

图 18.

图 18

多元智能范式的刺激传递管道。每次试验由多个视图组成;管道特性定义了每个视图在精确时间的异步执行。

图 19.

图 19

集成开发界面显示我们的 OpenBCI 框架的代码编辑、文件资源管理器、实验预览和调试区域。

5. 结论

我们引入了一个灵活、可扩展且集成的 OpenBCI 框架,用于支持基于脑电图 (EEG) 的神经生理学实验。为此,我们选择了单板 OpenBCI Cyton,并开发了一套全新的驱动程序,以最大限度地发挥 ADS1299 的硬件优势。我们的方法支持多种采样率、封装尺寸、通信协议和自由电极放置,使其非常适合脑电图数据。此外,还添加了标记同步的创新功能。该系统以分布式方式运行,允许对关键流程(例如数据采集、刺激传递和实时数据分析)进行受控执行。在运动想象范式下取得的结果表明,通过对 OpenBCI 硬件的专门处理,该系统的稳健性和稳定性得以保持。与最先进的方法相比,闭环 BCI 能够保证在可接受的延迟和抖动范围内实时传输数据。该开发环境提供了完整的 API、自动后台配置以及一系列易于使用的刺激传递小部件,使其成为 BCI 数据处理和自定义扩展开发的理想平台。

未来的工作将把提出的框架扩展到 32 和 64 个脑电图通道 [ 47,48 ]。本研究使用了 OpenBCI Cyton 开发板,它是性能最高的硬件设备之一。然而,我们希望测试即将推出的集成最新技术通信协议的采集板。此外,我们还将测试闭环方法以及先进的机器学习和深度学习算法,以研究基于 OpenBCI 的解决方案中技能不足的问题 [ 36,49 ]

缩写

本文中使用了以下缩写:

脑机接口脑机接口
脑电图脑电图
米尔媒体与信息素养
图形用户界面图形用户界面
射频射频
蓝牙蓝牙
ERP事件相关电位
SDK软件开发工具包
稳定程序每秒采样数
TCP传输控制协议
JSONJavaScript 对象表示法
反式吡咯烷酮远程 Python 调用
实时协议实时协议
集成开发环境集成开发环境
心肌梗死运动想象
模数转换器模数转换器
远距离驾驶光敏电阻
API应用程序编程接口

参考

  • 1.Tremmel C. 博士论文。美国弗吉尼亚州诺福克市奥道明大学:2019 年。利用电生理和运动活动评估交互式虚拟现实环境中的认知负荷。 [ DOI ] [ PMC 免费文章] [ PubMed ] [谷歌学术]
  • 2.Polat K.、Aygun AB、Kavsaoglu,基于增强现实脑电图(AR EEG)的脑机接口控制应用:综合综述。《仿生学与分子生物学杂志》,2021;1:20-33。 [谷歌学术]
  • 3.Vasiljevic GAM, de Miranda LC,基于消费级脑电图设备的脑机接口游戏:系统文献综述。国际人类互动杂志。2020;36:105-142。doi:10.1080/10447318.2019.1612213。 [ DOI ] [ Google学术]
  • 4.Mudgal SK, Sharma SK, Chaturvedi J., Sharma A. 脑机接口在神经科学领域的进展:应用与问题。跨学科神经外科。2020;20:100694。doi: 10.1016/j.inat.2020.100694。 [ DOI ] [ Google学术]
  • 5.Bansal D.,Mahajan R. 基于脑电图的脑机接口:认知分析与控制应用。Academic Press;美国马萨诸塞州剑桥:2019。 [谷歌学术]
  • 6.Choi I., Kwon GH, Lee S., Nam CS,运动想象脑机接口控制的功能性电刺激在康复中的应用。脑科学。2020;10:512。doi: 10.3390/brainsci10080512。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术搜索]
  • 7.Fraiwan M.,Alafeef M.,Almomani F. 利用脑电信号多尺度熵分析衡量人类视觉兴趣。J. Ambient Intell. Humaniz. Comput. 2021;12:2435–2447。doi: 10.1007/s12652-020-02381-5。 [ DOI ] [ Google 学术]
  • 8.Taherian S., Davies TC,护理人员和特殊教育人员对商用脑机接口作为接入技术的看法:一项定性研究。脑机接口。2018;5:73–87。doi:10.1080/2326263X.2018.1505191。 [ DOI ] [ Google 学术]
  • 9.Alcolea-Díaz GAD、Reig RR、Mancinas-Chávez RMC、Alcolea-Díaz G.、Reig R.、Mancinas-Chávez R。教科文组织从信息结构考虑角度为教师提供的媒体和信息素养课程。通讯车。媒体教育资源。 J.2020;28 doi:10.3916/C62-2020-09。 [ DOI ] [谷歌学术]
  • 10.Collazos-Huertas D.、Caicedo-Acosta J.、Casta no-Duque GA 和 Acosta-Medina CD,《基于时频原子的运动想象分类增强多实例表征》。《神经科学前沿》,2020;14:155。doi: 10.3389/fnins.2020.00155。 [ DOI ] [ PMC 免费文章] [ PubMed ] [谷歌学术]
  • 11.Kawala-Sterniuk A.、Browarska N.、Al-Bakri A.、Pelc M.、Zygarlicki J.、Sidikova M.、Martinek R. 和 Gorzelanczyk EJ,脑机接口五十余年发展综述。脑科学。2021;11:43。doi: 10.3390/brainsci11010043。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 12.Becker S.、Dhindsa K.、Mousapour L.、Al Dabagh Y. 脑机接口文盲:是我们,不是他们。优化个体大脑的脑机接口;2022 年第十届国际脑机接口 (BCI) 冬季会议论文集;韩国江原道。2022 年 2 月 21-23 日;第 1-3 页。 [谷歌学术]
  • 13.Wessel JR, Gorgolewski KJ, Bellec P. 科学中的软件切换:动机、挑战和解决方案。《认知科学趋势》。2019;23:265-267。doi:10.1016/j.tics.2019.01.004。 [ DOI ] [ PubMed ] [ Google学术]
  • 14.Donoghue T.、Voytek B. 和 Ellis SE,《大规模教授富有创造性和实践性的数据科学》。《统计数据科学与教育杂志》,2021;29:S27–S39。doi:10.1080/10691898.2020.1860725。 [ DOI ] [ Google 学术]
  • 15.张敏,侯勇,唐荣,李勇。嵌入切线空间极限学习机用于脑机接口系统中的脑电信号解码。《控制科学与工程杂志》,2021;2021:9959195。doi:10.1155/2021/9959195。 [ DOI ] [谷歌学术]
  • 16.Ordikhani-Seyedlar M.,Lebedev MA,《脑机接口手册》。CRC出版社;美国佛罗里达州博卡拉顿:2018年。《利用脑机接口增强注意力》;第549-560页。 [谷歌学术]
  • 17.Alkhachroum A., Appavu B., Egawa S., Foreman B., Gaspard N., Gilmore EJ, Hirsch LJ, Kurtz P., Lambrecq V., Kromm J. 等。重症监护病房中的脑电图:重点关注急性脑损伤。重症监护医学。2022;48:1443–1462。doi: 10.1007/s00134-022-06854-3。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 18.Abid S.、Papin G.、Vellieux G.、de Montmollin E.、Wicky PH、Patrier J.、Jaquet P.、Bouadma L.、Rouvel-Tallec A.、Timsit JF 等。用于评估 ICU 昏迷患者的简化脑电图蒙太奇和解释。暴击。护理探索。 2022;4:e0781。 doi:10.1097/CCE.0000000000000781。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
  • 19.Kumari A.,Edla DR,《脑机接口研究:方法与应用》。SN 计算机科学,2023;4:98。doi:10.1007/s42979-022-01515-0。 [ DOI ] [ Google 学术]
  • 20.Assran M.、Aytekin A.、Feyzmahdavian HR、Johansson M. 和 Rabbat MG,《异步并行和分布式优化的进展》。IEEE 论文集,2020;108:2013–2031。doi:10.1109/JPROC.2020.3026619。 [ DOI ] [ Google 学术]
  • 21.Deshmukh S.、Thirupathi Rao K. 和 Shabaz M. 基于协作学习的大规模分布式计算框架中的掉队预防。安全通信网络 2021;2021:8340925。doi:10.1155/2021/8340925。 [ DOI ] [谷歌学术]
  • 22.Kohli V.、Tripathi U.、Chamola V.、Rout BK 和 Kanhere SS,《基于脑机接口的智慧城市应用的虚拟现实和增强现实用例综述》。微处理。微系统。2022;88:104392。doi:10.1016/j.micpro.2021.104392。 [ DOI ] [ Google 学术]
  • 23.Ha J., Park S., Im CH,一种用于虚拟现实应用的新型混合脑机接口,采用基于稳态视觉诱发电位的脑机接口和基于眼电图的眼动追踪技术,以提高信息传输速率。Front. Neuroinf. 2022;16:11。doi: 10.3389/fninf.2022.758537。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 24.Buetler KA, Penalver-Andres J., Özen Ö., Ferriroli L., Müri RM, Cazzoli D., Marchal-Crespo L. 利用沉浸式虚拟现实“欺骗大脑”:改变对具身化身的自我感知会影响运动皮层兴奋性和动作启动。《人体神经科学前沿》2022;15:814。doi: 10.3389/fnhum.2021.787487。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术搜索]
  • 25.Nam CS, Nijholt A., Lotte F. 脑机接口手册:技术与理论进展。CRC出版社;美国佛罗里达州博卡拉顿:2018年。 [谷歌学术]
  • 26.Sabio J., Williams N., McArthur G., Badcock NA, 关于消费级脑电图设备在研究中的应用范围综述。bioRxiv。2022 doi: 10.1101/2022.12.04.519056。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术搜索]
  • 27.He C., Chen YY, Phang CR, Stevenson C., Chen IP, Jung TP, Ko LW, 最新可穿戴及无线脑电图系统多样性及适用性综述。IEEE 生物医学与健康信息杂志,2023,doi: 10.1109/JBHI.2023.3239053。 [ DOI ] [ PubMed ] [ Google 学术]
  • 28.LaRocco J.、Le MD、Paeng DG,一项关于用于嗜睡检测的现有低成本脑电图耳机的系统评价。《神经病学前沿》2020;14:42。doi: 10.3389/fninf.2020.553352。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 29.Peterson V., Galván C., Hernández H., Spies R. 一项完整的低成本消费级脑机接口系统的可行性研究。Heliyon。2020;6:e03425。doi: 10.1016/j.heliyon.2020.e03425。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术搜索]
  • 30.Laport F.、Vazquez-Araujo FJ、Iglesia D.、Castro PM、Dapena A. 低成本开源脑电图设备比较研究。多学科数字出版研究所,2019;21:40。 [谷歌学术]
  • 31.Frey J. 消费级 EEG 放大器与 BCI 应用中医疗级设备的比较;国际 BCI 会议论文集;美国加利福尼亚州太平洋格罗夫。2016 年 5 月 30 日至 6 月 3 日。 [ Google 学术]
  • 32.Wilson JA, Mellinger J., Schalk G., Williams J. 一种测量脑机接口延迟的程序。IEEE 生物医学工程汇刊,2010;57:1785–1797。doi: 10.1109/TBME.2010.2047259。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 33.Alonso-Valerdi L.,Mercado-García V. 从用户配置文件、神经生理因素和用户体验的角度设计脑机接口。墨西哥生物医学工程评论。2019;40:1-12。doi:10.17488/rmib.40.2.3。 [ DOI ] [谷歌学术]
  • 34.Costa NMC,神经反馈训练中的自我调节学习:人机框架对正念等外部刺激对受试者的影响。2021年。[(2023年1月15日访问)]。在线访问: https://repositorium.sdum.uminho.pt/handle/1822/75752
  • 35.徐晨,孙晨,姜刚,陈晓,何倩,谢鹏。基于稀疏表示的两级多域特征提取用于运动想象分类。生物医学。信号处理。控制。2020;62:102160。doi:10.1016/j.bspc.2020.102160。 [ DOI ] [ Google学术]
  • 36.Collazos-Huertas DF、Álvarez-Meza AM、Acosta-Medina CD、Casta no-Duque G. 和 Castellanos-Dominguez G. 基于 CNN 的框架,利用空间丢弃增强运动想象分类中神经活动的解释。Brain Inf. 2020;7:8。doi: 10.1186/s40708-020-00110-4。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 37.Galindo-Nore na S.、Cárdenas-Pe na D. 和 Orozco-Gutierrez Á. 多核 Stein 空间模式在运动想象任务多类别判别中的应用。应用科学。2020;10:8628。doi:10.3390/app10238628。 [ DOI ] [谷歌学术]
  • 38.García-Murillo DG, Alvarez-Meza A., Castellanos-Dominguez G. 基于单次试验核函数的连接,用于增强运动相关任务中的特征提取。传感器。2021;21:2750。doi: 10.3390/s21082750。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 39.Jeunet C., Glize B., McGonigal A., Batail JM, Micoulaud-Franchi JA, 基于EEG的脑机接口和针对感觉运动节律的神经反馈技术在运动技能提升中的应用:理论背景、应用及前景。《神经生理学与临床》2019;49:125–136。doi: 10.1016/j.neucli.2018.10.068。 [ DOI ] [ PubMed ] [ Google学术]
  • 40.任胜,王伟,侯志刚,梁晓,王建,史伟。基于FES和VR的增强型运动想象脑机接口用于下肢运动。IEEE神经系统康复工程学报,2020;28:1846-1855。doi:10.1109/TNSRE.2020.3001990。 [ DOI ] [ PubMed ] [ Google学术]
  • 41.Bridges D.、Pitiot A.、MacAskill MR、Peirce JW,《时间大型研究:比较一系列基于实验室和在线的实验生成器》。PeerJ. 2020;8:e9414。doi: 10.7717/peerj.9414。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 42.Niso G., Krol LR, Combrisson E., Dubarry AS, Elliott MA, François C., Héjja-Brichard Y., Herbst SK, Jerbi K., Kovic V. 等。脑电图(EEG)和脑磁图(MEG)研究中的良好科学实践:进展与展望。《神经影像学》。2022;257:119056。doi: 10.1016/j.neuroimage.2022.119056。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 43.徐倩,张建。piFogBed:基于树莓派的雾计算测试平台;2019 年 IEEE 第 38 届国际性能计算与通信会议 (IPCCC) 论文集;英国伦敦。2019 年 10 月 29-31 日;第 1-8 页。 [谷歌学术]
  • 44.Jolles JW,《树莓派的广泛应用:生物学家的回顾与指南》。《生态学方法与进化》。2021;12:1562-1579。doi:10.1111/2041-210X.13652。 [ DOI ] [谷歌学术]
  • 45.Schalk G.、McFarland DJ、Hinterberger T.、Birbaumer N. 和 Wolpaw JR BCI2000:一种通用脑机接口 (BCI) 系统。IEEE 生物医学工程汇刊 2004;51:1034–1043。doi: 10.1109/TBME.2004.827072。 [ DOI ] [ PubMed ] [ Google 学术]
  • 46.基萨基耶高中博士论文。海尔布隆应用技术大学;德国海尔布隆:2013年。脑机接口:OpenViBE 作为 p300 拼写器平台。 [谷歌学术]
  • 47.Guo L. 使用皮层内超密度微电极阵列(超密度MEA)进行功能性神经映射的原理,神经工程杂志。2020;17:036018。doi: 10.1088/1741-2552/ab8fc5。 [ DOI ] [ PubMed ] [ Google学术]
  • 48.Liu Q., Ganzetti M., Wenderoth N., Mantini D. 利用脑电图检测大规模脑网络:电极密度、头部建模和源定位的影响。Front. Neuroinf. 2018;12:4。doi: 10.3389/fninf.2018.00004。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
  • 49.De La Pava Panche I.、Alvarez-Meza AM 和 Orozco-Gutierrez A. 基于 Renyi α 熵的数据驱动有效连接度量。Front. Neurosci. 2019;13:1277。doi: 10.3389/fnins.2019.01277。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google 学术]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极度畅想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值