python运用DBSCAN算法对坐标点进行离群点检测&dataframe的append问题

本文介绍了如何利用DBSCAN算法对含有噪声的共享单车GPS坐标数据进行离群点检测,以提高位置数据的准确性。通过调整DBSCAN的eps和min_samples参数,可以有效地进行聚类,并排除掉偏差较大的坐标点。同时,文章还提醒了在处理Pandas DataFrame时,使用append方法需要注意的细节,需用重新赋值的方式将数据加入DataFrame。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

(关于dataframe的append问题,直接拖至文后)

我们有n多单车,每个单车一段时间(差不多一个星期)规律返回的经纬度位置数据,类似于下图,但是有个问题是单车的这些经纬度数据的准确性只有70%左右,不准确的经纬度会出现偏差,我们要做的就是去掉那些噪音比较大的坐标点,筛选出正确位置从而进行之后的操作。


解决方案

  • DBSCAN算法简介
  • 操作源码
  • 小收获&小总结

DBSCAN算法简介

DBSCAN是一种典型的基于密度的聚类算法。
两张图可以非常清晰地表现k-means与DBSCAN的聚类结果:
原始随机数据:

k-means的聚类结果:

DBSCAN的聚类结果:

关于DBSCAN的具体介绍可以参照:
https://blog.csdn.net/jerry81333/article/details/75640140

操作源码

import pandas as pd
from  math import radians
from math import tan,atan,acos,sin,cos
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值