1. Guava Cache是什么
简介
Guava cache是一个支持高并发的线程安全的本地缓存。
多线程情况下也可以安全的访问或者更新Cache。
这些都是借鉴了ConcurrentHashMap的结果。
不过,guava cache 又有自己的特性
当cache中不存在要查找的entry的时候,它会自动执行用户自定义的加载逻辑,加载成功后再将entry存入缓存并返回给用户未过期的entry,如果不存在或者已过期,则需要load。
同时为防止多线程并发下重复加载,需要先锁定,获得加载资格的线程(获得锁的线程)创建一个LoadingValueRefrerence并放入map中,其他线程等待结果返回。
核心功能
- 自动将entry节点加载进缓存结构中;
- 当缓存的数据超过设置的最大值时,使用LRU算法移除;
- 具备根据entry节点上次被访问或者写入时间计算它的过期机制;
- 缓存的key被封装在WeakReference引用内;
- 缓存的Value被封装在WeakReference或SoftReference引用内;
- 统计缓存使用过程中命中率、异常率、未命中率等统计数据。
Guava Cache是一个支持LRU的ConcurrentHashMap,并提供了基于容量、时间、引用的缓存回收方式。
适用场景
- 愿意消耗一些内存空间来提升速度(以空间换时间,提升处理速度);
- 能够预计某些key会被查询一次以上;
- 缓存中存放的数据总量不会超出内存容量(Guava Cache是单个应用运行时的本地缓存)。
- 计数器(如可以利用基于时间的过期机制作为限流计数)
2. Guava Cache的使用
GuavaCache使用时主要分二种模式:LoadingCache、CallableCache
核心区别
- LoadingCache 创建时需要有合理的默认方法来加载或计算与键关联的值;
- CallableCache 创建时无需关联固定的CacheLoader使用起来更加灵活。
前置准备
1. 引入jar包
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>29.0-jre</version>
</dependency>
2. 了解CacheBuilder的配置方法
3. mock RPC调用方法,用于获取数据
private static List<String> rpcCall(String cityId) {
// 模仿从数据库中取数据
try {
switch (cityId) {
case "0101":
System.out.println("load cityId:" + cityId);
return ImmutableList.of("上海", "北京", "广州", "深圳");
}
} catch (Exception e) {
// 记日志
}
return Collections.EMPTY_LIST;
}
使用方法
1. 创建LoadingCache缓存
使用CacheBuilder来构建LoadingCache实例,可以链式调用多个方法来配置缓存的行为。其中CacheLoader可以理解为一个固定的加载器,在创建LoadingCache时指定,然后简单地重写V load(K key) throws Exception方法,就可以达到当检索不存在的时候自动加载数据的效果。
//创建一个LoadingCache,并可以进行一些简单的缓存配置
private static LoadingCache<String, Optional<List<String>> > loadingCache = CacheBuilder.newBuilder()
//配置最大容量为100,基于容量进行回收
.maximumSize(100)
//配置写入后多久使缓存过期-下文会讲述
.expireAfterWrite(3, TimeUnit.SECONDS)
//配置写入后多久刷新缓存-下文会讲述
.refreshAfterWrite(3, TimeUnit.SECONDS)
//key使用弱引用-WeakReference
.weakKeys()
//当Entry被移除时的监听器-下文会讲述
.removalListener(notification -> System.out.println("notification=" + notification))
//创建一个CacheLoader,重写load方法,以实现"当get时缓存不存在,则load,放到缓存并返回的效果
.build(new CacheLoader<String, Optional<List<String>>>() {
//重点,自动写缓存数据的方法,必须要实现
@Override
public Optional<List<String>> load(String cityId) throws Exception {
return Optional.ofNullable(rpcCall(cityId));
}
//异步刷新缓存-下文会讲述
@Override
public ListenableFuture<Optional<List<String>>> reload(String cityId, Optional<List<String>> oldValue) throws Exception {
return super.reload(cityId, oldValue);
}
});
// 测试
public static void main(String[] args) {
try {
System.out.println("load from cache once : " + loadingCache.get("0101").orElse(Lists.newArrayList()));
Thread.sleep(4000);
System.out.println("load from cache two : " + loadingCache.get("0101").orElse(Lists.newArrayList()));
Thread.sleep(2000);
System.out.println("load from cache three : " + loadingCache.get("0101").orElse(Lists.newArrayList()));
Thread.sleep(2000);
System.out.println("load not exist key from cache : " + loadingCache.get("0103").orElse(Lists.newArrayList()));
} catch (ExecutionException | Interrup