Tensorflow学习笔记1—线性回归Linear Regression

本文详细介绍使用TensorFlow实现线性回归的过程,包括数据准备、模型建立、成本函数定义及优化器选择。通过具体实例,展示如何训练模型并进行预测,同时可视化训练过程中的损失变化和拟合效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 #-*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


#设置参数
learning_rate = 0.01
training_epoch = 1000
display_step = 50

#设置数字
train_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
                         2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]

X = tf.placeholder("float")
Y = tf.placeholder("float")

W = tf.Variable(np.random.randn(),name = 'weight')
b = tf.Variable(np.random.randn(),name = 'bias')

pred = tf.add(tf.multiply(X,W),b)

cost = tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

init = tf.global_variables_initializer()

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(train_X,train_Y)
plt.ion()
plt.show()

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(training_epoch):
        for (x,y) in zip(train_X,train_Y):
            sess.run(optimizer,feed_dict={X:x,Y:y})
        if (epoch+1)%display_step==0:
            try:
                ax.lines.remove(lines[0])
            except Exception:
                pass
            c = sess.run(cost,feed_dict={X: train_X, Y:train_Y})
            print ("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c), \
                "W=", sess.run(W), "b=", sess.run(b))
            lines = ax.plot(train_X, sess.run(W) * train_X + sess.run(b), 'r-', lw=5)
            plt.pause(0.1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值