#-*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#设置参数
learning_rate = 0.01
training_epoch = 1000
display_step = 50
#设置数字
train_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
X = tf.placeholder("float")
Y = tf.placeholder("float")
W = tf.Variable(np.random.randn(),name = 'weight')
b = tf.Variable(np.random.randn(),name = 'bias')
pred = tf.add(tf.multiply(X,W),b)
cost = tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
init = tf.global_variables_initializer()
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(train_X,train_Y)
plt.ion()
plt.show()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epoch):
for (x,y) in zip(train_X,train_Y):
sess.run(optimizer,feed_dict={X:x,Y:y})
if (epoch+1)%display_step==0:
try:
ax.lines.remove(lines[0])
except Exception:
pass
c = sess.run(cost,feed_dict={X: train_X, Y:train_Y})
print ("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
lines = ax.plot(train_X, sess.run(W) * train_X + sess.run(b), 'r-', lw=5)
plt.pause(0.1)
Tensorflow学习笔记1—线性回归Linear Regression
最新推荐文章于 2024-01-07 21:45:07 发布