结构化学习(Structured Learning)

这篇博客探讨了结构化学习的概念,指出传统学习模型的输入输出往往是向量,但在实际场景中可能涉及序列、列表或树等结构。通过结构化学习的统一框架——寻找匹配度函数F(x,y),并解决相关问题,包括F的定义、最大值求解及模型训练。文中还提到了线性模型和结构化SVM在结构化学习中的应用。" 49887149,5522857,HTML5音乐网站制作与播放功能详解,"['javascript', '音乐', 'HTML5']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写作本博文只为学习与分享知识。所以如果本系列教程对你有帮助,麻烦不吝在github的项目上点个star吧!非常感谢!

本博客是针对李宏毅教授在youtube上上传的Machine Learning课程视频的学习笔记。课程链接

引入

我们之前学习到的学习模型的输入与输出一直以来都是向量(vector),但是在实际问题中,我们的输入输出可能是别的结构。

比如,我们可能会需要输入输出是序列(sequence)、列表(List)或者树(Tree)等等。

例子:

  • 结构学习的统一框架

    • 训练

    1.找到一个函数F
    2.F(x,y):评估对象x和y有多么匹配

    • 推断(测试)

    给定一个对象x,尝试获得 y ~ = a r g   m a x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值