open3d:随机采样一致性分割平面

1、背景介绍

      随机采样一致性算法(RANSAC Random Sample Consensus)是一种迭代的参数估计算法,主要用于从包含大量噪声数据的样本中估计模型参数。其核心思想是通过随机采样和模型验证来找到数据中最符合模型假设的点。因此,只要事先给定要提取的参数模型,即可从点云中分割出对应点云模型。如下图所示,为使用RANSAC从点云中分割平面模型的案例,整体上比较理想。

2、算法原理介绍

RANSAC 算法步骤:

  • 初始化:设置最大迭代次数 max_iterations 和内点阈值 distance_threshold。
  • 随机采样:从数据集中随机选择最小数量的样本点来拟合模型(例如,拟合平面需要三个点)。
  • 模型估计:使用选定的样本点计算模型参数(例如,平面的方程)。
  • 模型验证:计算所有数据点到模型的距离,将距离小于 distance_threshold 的点标记为内点。
  • 评估模型:计算内点的数量,如果内点数量超过预定的阈值并且模型质量优于之前的模型,则更新最佳模型。
  • 重复:重复上述步骤,直到达到最大迭代次数或者找到最优模型。

    &nb

### Open3D 点云分割方法概述 #### 平面分割 对于点云中的平面检测,Open3D 提供了一种基于RANSAC(随机样本一致性)的方法来拟合几何模型。此方法能够有效地识别出场景内的平坦表面,比如地面、墙壁等。通过设定最大迭代次数和距离阈值参数,可以调整算法性能以适应不同精度需求的应用场合[^1]。 ```python import open3d as o3d def plane_segmentation(pcd, distance_threshold=0.01, ransac_n=3, num_iterations=1000): """ 对输入的点云执行平面分割 参数: pcd (open3d.geometry.PointCloud): 输入点云对象 distance_threshold (float): 距离阈值,默认为0.01米 ransac_n (int): RANSAC每次选取的数据点数,默认取三个点构成一个平面 num_iterations (int): 进行多少次采样尝试 返回: tuple: 分割后的内群和平面系数向量(a,b,c,d),以及剩余点云 """ plane_model, inliers = pcd.segment_plane(distance_threshold, ransac_n=ransac_n, num_iterations=num_iterations) inlier_cloud = pcd.select_by_index(inliers) outlier_cloud = pcd.select_by_index(inliers, invert=True) return inlier_cloud, plane_model, outlier_cloud ``` #### 欧式聚类 当目标是从复杂环境中分离出独立的对象时,欧式聚类提供了一个有效的解决方案。这种方法依据空间位置关系将相似特性的点聚集在一起形成簇(cluster)。为了提高效率,通常会先对原始数据应用降维技术如体素下采样(voxel downsampling)[^2]。 ```python from sklearn.cluster import DBSCAN import numpy as np def euclidean_clustering(pcd, eps=0.02, min_points=10): """ 使用DBSCAN实现欧氏聚类 参数: pcd (open3d.geometry.PointCloud): 输入点云对象 eps (float): 半径大小,默认设为0.02m min_points (int): 成为一簇所需的最少点数量 返回: list of ndarray: 各个簇对应的索引列表 """ points = np.asarray(pcd.points) clustering = DBSCAN(eps=eps, min_samples=min_points).fit(points) labels = clustering.labels_ unique_labels = set(labels) clusters_indices = [] for label in unique_labels: if label != -1: # 噪声点标记为-1不予考虑 cluster_idx = np.where(labels == label)[0] clusters_indices.append(cluster_idx.tolist()) return clusters_indices ``` #### 最小图割法 针对某些特殊情况下的精确分割任务,最小图割(min-cut)提供了另一种思路。它构建了一个由源节点(source node)、汇节点(sink node)及中间各点组成的加权有向图(weighted directed graph),并通过寻找使总成本最小化的切割路径完成最终划分工作[^3]。 #### 区域生长算法 最后介绍的是区域增长(region growing)方式,这是一种自底向上(bottom-up approach)的过程,即从选定的一个或几个起始点出发逐步扩展直至满足停止条件为止。该方案特别适用于那些形状较为规整的目标物提取操作中[^4]。 ```python import copy def region_growing_segmentation(pcd, seed_point=None, max_distance=0.02): """ 实现简单的区域生长分割 参数: pcd (open3d.geometry.PointCloud): 输入点云对象 seed_point (tuple or None): 种子点坐标(x,y,z); 若未指定则自动挑选最凹处作为起点 max_distance (float): 新增成员的最大允许偏差范围,默认设置为0.02m 返回: segmented_pcd (open3d.geometry.PointCloud): 已经被分隔出来的部分 """ processed = copy.deepcopy(pcd) tree = o3d.geometry.KDTreeFlann(processed) if not isinstance(seed_point, tuple): curvatures = [] for point in processed.points: _, idxs, _ = tree.search_knn_vector_3d(point, knn=8) neighbors = np.array([processed.points[i] for i in idxs]) cov_matrix = np.cov((neighbors - point).T) eigenvalues = sorted(np.linalg.eigvals(cov_matrix)) curvature = eigenvalues[-1]/sum(eigenvalues) if sum(eigenvalues)>0 else 0. curvatures.append(curvature) seed_point = processed.points[np.argmin(curvatures)] visited = {seed_point} queue = [seed_point] while len(queue) > 0: current_pt = queue.pop() _, indices, distances = tree.search_radius_vector_3d(current_pt, radius=max_distance) new_neighbors = [ pt for dist,pt,idx in zip(distances,indices,[processed.points[idx] for idx in indices]) if dist<=max_distance and pt not in visited ] visited.update(new_neighbors) queue.extend(new_neighbors) mask = np.zeros(len(processed.points), dtype=bool) for v in visited: mask[list(processed.points).index(v)] = True segmented_pcd = processed.select_by_index(list(range(len(mask)))[mask]) return segmented_pcd ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云实验室lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值