TensorFlow实现VGG16

本文介绍如何使用TensorFlow实现VGG16网络,并以17类花卉数据集进行图像分类实战。从项目架构搭建到训练过程,涵盖数据预处理、模型定义、训练及测试等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文利用TensorFlow实现VGG16,并以17 Flowers(17 Category Flower Dataset)为案例进行实战。

1. 项目架构

在这里插入图片描述
注:所有图片都在jpg文件夹下,删除该文件夹下两个非图片文件。
先看项目架构:
在这里插入图片描述

注:Example文件夹下为测试数据,部分来自于训练集,其余来自于网上。

2. 文件说明

文件功能
pre.py将jpg文件下图片按类别分开
loadNpy.py读取预训练权重(用于查看预训练权重格式)
create_tfrecords.py将训练数据转换成TFRecords格式
VGG16.pyVGG16模型定义
training.py网络训练过程
test.py对网络训练结果进行测试

注:学习率为1e-5,否则不会收敛。vgg16.npy文件可以从网上自行获取。

3. 训练过程

  1. 先运行 pre.py 文件,将数据按类别分开,便于生成标签。
  2. 再运行 create_tfrecords.py 文件,生成 train.tfrecords 文件。
  3. 运行training.py进行训练。
  4. 训练500轮结果,一般在200轮收敛。
    在这里插入图片描述在这里插入图片描述

4. 项目源码

https://github.com/dhuQChen/VGG16
vgg16预训练权重链接: https://pan.baidu.com/s/1haAfyxjwsYx-ZGLz7iO5HA 提取码: bgw4

作为练习,读者可以对猫狗大战数据集使用VGG16进行分类。

评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值