逻辑回归实现分类计算

本文介绍了逻辑回归算法在处理分类问题中的应用,特别是针对二分类问题。首先阐述了线性回归的基本原理,然后详细讲解了逻辑回归的sigmoid函数和如何通过梯度下降优化模型。文中以研究生录取为例,展示了数据预处理、模型构建和评估的过程,并讨论了过拟合现象和模型的可解释性问题。最后,通过改进和标准化数据,提高了模型的R方值,但仍然较低,表明仅凭成绩、GPA和排名预测研究生录取存在局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、算法原理:

1.线性回归算法

给定由n个属性(维度)描述的示例x=(x1;x2;…;xn),其中xi是x在第i个属性上的取值,线性模型试图学的一个通过属性的线性组合来进行预测的函数,即

f(x)=w_{1}x_{1}+w_{2}x_{2}+...+w_{n}x_{n}+b

也可以写成:

f(x)=w^{T}x+b

w为回归系数,b为常量。

线性回归通常用来处理连续性变量,当因变量f(x)为离散变量,比如分类变量时,线性回归就显得不那么实用,这时候就需要采用其他方法来处理分类问题。

2.逻辑回归算法

逻辑回归是用于处理因变量为分类变量的回归问题,常见的二分类或二项分布问题。是一种分类方法。又称为sigmoid函数。

假设一个二分类问题:判断一个人是否患病,并且有这些属性:年龄、性别、体质指数、平均血压和疾病指数等。

患病的概率为p,不患病的概率为1-p

那么患病与不患病的比例为:z=ln(\frac{p}{1-p})

反过来推导p:

e^{z}=\frac{p}{1-p}...........................(1)

公式两边分别乘以e^{z}得到:

e^{z}(1-p) = p........................(2) 

p=\frac{e^{z}}{1+e^{z}}.............................(3)

p=\frac{1}{1+e^{-z}}...........................(4)

其中z值表示一元多项式,一般默认值域范围为[-6,6],也可以确定为更高的值。对应的p值也会增加。

基本图像如下:

 

一般情况在z值是较难确定的,所以引入梯度下降算法,进行线性回归系数的拟合计算。

3.梯度下降算法

梯度下降原理在机器学习和模型优化中有着十分重要的作用。类似于:将一个球从山顶往山脚滚动,先加速,到一定时候减速。与sigmoid函数图像相类似,有的时候也会用sigmoid函数作为梯度下降函数。

线性回归函数公式:

h(x)=\Theta^{T}X

其中θ为线性回归系数,梯度下降用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值