论文阅读——Recommender System: Review

本文探讨了推荐系统的技术,包括基于内容、协同过滤和知识基础的方法,并强调了混合推荐系统的使用以提升性能。研究还关注了移动端推荐系统这一快速增长的研究领域。文章介绍了各种推荐技术,如协同过滤和内容为基础的过滤,并讨论了将这些方法结合到混合系统中以达到最佳效果的重要性。此外,文章还概述了移动推荐系统在当前信息化时代的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

00 文章基本信息

  • 文章来源:International Journal of Computer Applications
  • 作者:Akshita II year, M.Tech PDM College Of Engineering For Women,
    Haryana, India;Smita Associate Professor PDM College Of Engineering
    For Women, Haryana, India;

01 摘要

  • This paper discuss various techniques proposed for recommendations
    including content based, collaborative based and other techniques.
  • To improve performance, these methods have sometimes been combined in
    hybrid recommenders.
  • It also discuss about growing area of research in the area of
    recommender systems that is mobile recommender systems.

1 INTRODUCTION

文章目的:
The recommender system is about to identify the knowledge about the similar user or the event and derive the favorable aspect based on it.

对recommander system的划分/分类:
information retrieval systems、search engines

生成推荐列表的三种方法:
collaborative-based,content-based filtering, knowledge based.

为实现更好的推荐表现,需要结合多种不同的推荐方法:
One common thread in recommender systems research is the need to combine recommendation techniques to achieve peak performance.

2 RECOMMENDATION TECHNIQUES

3 RECOMMENDER SYSTEM EXMPLES

4 HYBRID RECOMMENDER SYSTEM

5 MOBILE RECOMMENDER SYSTEM

6 CONCLUSION

7 REFERENCES

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值