论文阅读——Discovering Subsequence Patterns for Next POI Recommendation

00 文章基本信息

01 摘要

以往方法存在的不足:

当前主流方法在学习用户的check-in序列中的POI-level POI级(如何理解POI-level:比如一个学生一年到头都在学校里不出校门,他的所有的POIs无非就是教室、宿舍、食堂、图书馆,这样的单个POI连起来很难判断出用户的行为模式(有点不太好解释))序列时忽略了那些代表用户的社会经济活动和用户偏好一致性的子序列模式(下面介绍什么是子序列模式)。但是由于很难定义那些complex but meaningful的子序列的granularity粒度,因此很难整个整合这些序列的语义子序列。

  • ignore the subsequence patterns that often represent the
    socio-economic activities or coherence of preference of the users.
  • However, it is challenging to integrate the semantic subsequences due to the difficulty to predefine the granularity of the complex but meaningful subsequences.

our contributions:
一个模型:ASPPA

  • we propose Adaptive Sequence Partitioner with Power-law Attention (ASPPA) to automatically identify each semantic subsequence of POIs and discover their sequential patterns.

两种方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值