​Deep Search 提升 RAG 检索效果的实践与优化​

​1. Deep Search 是什么?​​

Deep Search 是一种面向检索增强生成(RAG)系统的智能检索范式,其核心在于通过 ​分阶段检索​ 与 ​动态决策机制​ 优化信息召回质量。与传统 RAG 的“一次性检索”不同,Deep Search 强调 ​检索与推理的协同,在生成过程中按需触发检索,并基于语义相关性、上下文深度等维度筛选信息。

例如,当用户提问涉及多层级知识(如“2024年Transformer改进方向的最新研究”)时,Deep Search 会先检索核心概念的定义,再逐层深入技术细节或最新论文,而非一次性返回冗余内容。这种机制显著减少了噪音干扰,提升后续生成环节的准确性。


​2. Deep Search 如何提高 RAG 的效果?​​

传统 RAG 的检索过程是“一次性完成”:用户提问后,系统直接召回一批文档片段,无论是否冗余,全部塞给生成模型。这容易导致两个问题:

  1. 答案质量不稳定​:冗余信息干扰生成逻辑,模型可能错误引用低质量内容;
  2. 缺乏灵活性​:检索完成后无法根据生成需求动态补充信息。

Deep Search 通过两项核心改进解决这些问题:

1. 分阶段检索,层层深入
  • 问题拆解​:将复杂问题拆解为多个子问题,分批次检索。例如回答“如何预测股票趋势”时:
    1. 第一阶段检索“预测股票趋势的常用方法”;
    2. 若生成模型发现需要具体技术细节,触发第二阶段检索“图神经网络+股票预测案例”;
    3. 遇到模糊结论(如“数据量不足影响效果”)时,第三阶段检索“小样本优化方案”。
  • 优势​:避免一次性召回大量无关内容,减少生成模型的判断负担。
2. 边生成边检索,动态补全
  • 主动查漏补缺​:生成过程中,模型实时检测知识缺口。例如:
    • 初始检索未覆盖“2024年最新研究”,生成到相关段落时自动触发二次检索;
    • 发现术语定义模糊(如“稀疏化方法”),立即检索权威定义。
  • 示例​:
    用户提问:“Transformer 模型如何降低计算成本?”
    • 传统 RAG:一次性检索“Transformer 优化方法”,可能混杂过时方案;
    • Deep Search:
      1. 首轮检索“主流计算成本优化技术”;
      2. 生成时发现未提及“2024年稀疏化技术”,立即补搜最新论文;
      3. 最终答案整合经典方法与最新进展。

​3. Deep Search 强化 RAG 的实现步骤​

有效
无效
需要
不需要
开始
生成关联问题
检索相关文本块
判断检索结果有效性
是否需要新增搜索查询?
抛弃
生成新关联问题
整理所有材料
生成最终答案
结束

步骤说明​:

  1. 意图解析​:使用大模型(如DeepSeek-R1)解析用户问题,生成检索关键词与子问题。
  2. 分阶段检索​:根据问题复杂度启动多轮检索,优先召回高置信度文档,再扩展相关上下文。
  3. 动态融合​:基于检索结果的质量与相关性,动态调整生成模型对检索内容的依赖权重。
  4. 验证迭代​:若生成答案置信度不足,触发二次检索并修正输出。

注意事项:

  • 注意设置最大循环迭代次数,以防无限循环

​4. 提示词示例

Prompt - 原始问题拆分

为了更全面地回答此问题,请将原始问题拆分为最多四个子问题,以字符串列表的形式返回。
如果是非常基础的问题无需拆分,则保持原始问题作为列表中的唯一元素。

原始问题:{original_query}

<示例>
输入样例:
"解释深度学习"

输出样例:
[
    "什么是深度学习?",
    "深度学习与机器学习有什么区别?",
    "深度学习的发展历史是怎样的?"
]
</示例>

请用Python列表格式返回响应:

Prompt - 判断文本块是否有助于回答问题

根据查询问题和检索到的文本块,判断该文本块是否有助于回答任意一个查询问题,只能返回"是"或"否",无需提供任何其他信息。

查询问题:{query}
检索到的文本块:{retrieved_chunk}

该文本块是否有助于回答问题?

Prompt - 迭代扩充,返回查询列表

根据原始查询、先前分解的子查询和所有检索到的文档块,判断是否需要新增搜索查询。如果需要进一步研究,请返回最多3个搜索查询的Python列表;如果不需要,请返回空列表。

注:如果原始查询是撰写报告类需求,即使已有信息充分,也倾向于生成补充性查询而非返回空列表。

原始查询:{question}

先前分解的子查询:{mini_questions}

相关文本块:
{mini_chunk_str}

请严格使用有效的Python列表格式返回,不要包含其他任何内容。

Prompt - 总结

你是一位擅长内容分析的AI专家,请基于先前分解的查询和检索到的相关文本块,总结形成具体且详细的回答或报告。

原始查询:{question}

先前分解的子查询:{mini_questions}

相关文本块:
{mini_chunk_str}

请开始总结:
### DeepSearch 技术实现应用 #### 工具特性及其组合优势 DeepSearch 使用的工具虽然简单,但通过巧妙组合可以满足大部分信息检索的需求。特别是 Grok3 的功能令人印象深刻,不仅能够执行常规搜索操作,还能发现并利用特定类型的网络资源作为快捷方式来提升效率,例如垂直搜索引擎页面或是某些站点内部更深层次的内容导航页[^1]。 #### 开源许可情况 值得注意的是,Deep Search Toolkit 是开源项目之一,其整体框架遵循 MIT License 进行分发;不过针对个别组件可能有不同的授权条款,在具体部署前应当仔细查阅相应模块内的版权声明文件以确保合规性[^3]。 #### 实际应用场景案例 考虑到嵌入式 AI 领域内对于高效能低功耗解决方案日益增长的兴趣,像 Grok3 所代表的那种能够在有限条件下快速定位有效信息的能力显得尤为重要。这有助于推动诸如边缘计算设备上的智能化服务开发等工作进展,从而促进整个行业向着更加灵活便捷的方向发展[^2]。 #### 构建推荐系统的流程概述 当涉及到如何创建一个基于 Elasticsearch 平台运行的有效推荐引擎时,则需经历几个重要阶段:首先是收集来自用户的交互记录形成原始素材库;接着经过清洗转换之后提取有价值的特征向量用于后续学习过程;再者就是依据选定算法完成参数调整直至获得满意的预测性能为止;最后一步则是将最终成果集成到 ES 中以便于实时响应查询请求并向用户提供个性化的建议列表[^4]。 ```python from elasticsearch import Elasticsearch, helpers es_client = Elasticsearch() def index_documents(documents): actions = [ { "_index": "recommendations", "_source": doc, } for doc in documents ] helpers.bulk(es_client, actions) documents_to_index = [{"title": "Example Document", "content": "..."}] index_documents(documents_to_index) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值