【无标题】

  1. Secureml: A system for scalable privacy-preserving machine learning
  2. Securenn: Efficient and private neural network training
  3. A training-integrity privacy-preserving federated learning scheme with trusted execution environment
  4. Secure multiparty learning from the aggregation of locally trained models
  5. A privacy-preserving and non-interactive federated learning scheme for regression training with gradient descent
  6. Outsourced privacy-preserving decision tree classification service over encrypted data
  7. Privacy-preserving collaborative deep learning with unreliable participants
  8. A Tutorial on the Simulation Proof Technique
  9. Privacy in deep learning: A survey
  10. A verifiable and privacy‐preserving multidimensional data aggregation scheme in mobile crowdsensing
  11. Private aggregation from fewer anonymous messages
  12. Maliciously secure matrix multiplication with applications to private deep learning
  13. Private outsourced Bayesian optimization
  14. Privacy preservation for machine learning training and classification based on homomorphic encryption schemes
  15. Securely outsourcing neural network inference to the cloud with lightweight techniques
  16. Fast privacy-preserving text classification based on secure multiparty computation
  17. Leia: A lightweight cryptographic neural network inference system at the edge
  18. Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud
  19. Privacy-preserving collective learning with homomorphic encryption
  20. Fast secure matrix multiplications over ring-based homomorphic encryption
  21. Privacy-preserving deep learning based on multiparty secure computation: A survey
  22. Outsourced privacy-preserving classification service over encrypted data
  23. PeGraph: A system for privacy-preserving and efficient search over encrypted social graphs
  24. A new public-key cryptosystem as secure as factoring
  25. Cryptonn: Training neural networks over encrypted data
  26. Securing approximate homomorphic encryption using differential privacy
  27. DVREI: Dynamic verifiable retrieval over encrypted images
  28. Towards secure and efficient outsourcing of machine learning classification
  29. Toward verifiable and privacy preserving machine learning prediction
  30. Efficient constructions for almost-everywhere secure computation
  31. SecureTrain: An approximation-free and computationally efficient framework for privacy-preserved neural network training
  32. Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities
  33. Securely and efficiently outsourcing decision tree inference
  34. Privacy-preserving threshold-based image retrieval in cloud-assisted Internet of Things
  35. An efficient and privacy-preserving outsourced support vector machine training for internet of medical things
  36. Swarm-fhe: fully homomorphic encryption-based swarm learning for malicious clients
  37. Privacy-preserving Byzantine-robust federated learning via blockchain systems
  38. PVD-FL: A privacy-preserving and verifiable decentralized federated learning framework
  39. VeriFL: Communication-Efficient and Fast Verifiable Aggregation for Federated Learning
  40. Verifiable privacy-preserving scheme based on vertical federated random forest
  41. PCNNCEC: Efficient and Privacy-Preserving Convolutional Neural Network Inference Based on Cloud-Edge-Client Collaboration
  42. PFLF: Privacy-preserving federated learning framework for edge computing
  43. Privacy-enhanced federated learning against poisoning adversaries
  44. Can Foundation Models Help Us Achieve Perfect Secrecy?
  45. 公钥密码方案构造及安全证明的知识要点和方法论
  46. Towards the alexnet moment for homomorphic encryption: Hcnn, the first homomorphic cnn on encrypted data with gpus
  47. Fully homomorphic encryption over the integers
  48. Homomorphic encryption for arithmetic of approximate numbers
  49. Achieving efficient and privacy-preserving neural network training and prediction in cloud environments
  50. VerifyNet: Secure and verifiable federated learning
  51. Privacy-preserving large language models (PPLLMs)
  52. Efficient and privacy-preserving similarity query with access control in eHealthcare
  53. Elsa: Secure aggregation for federated learning with malicious actors
  54. Somewhat practical fully homomorphic encryption
  55. Privacy-preserving object detection for medical images with faster R-CNN
  56. Optimizing secure decision tree inference outsourcing
  57. Practical secure aggregation for privacy-preserving machine learning
  58. Cryptflow: Secure tensorflow inference
  59. ShieldFL: Mitigating model poisoning attacks in privacy-preserving federated learning
  60. 格困难问题的复杂度分析
  61. {SWIFT}: Super-fast and robust {Privacy-Preserving} machine learning
  62. A verifiable privacy-preserving machine learning prediction scheme for edge-enhanced HCPSs
  63. NPMML: A framework for non-interactive privacy-preserving multi-party machine learning
  64. Secure and efficient outsourced k-means clustering using fully homomorphic encryption with ciphertext packing technique
  65. FedCor: Correlation-based active client selection strategy for heterogeneous federated learning
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值