- Secureml: A system for scalable privacy-preserving machine learning
- Securenn: Efficient and private neural network training
- A training-integrity privacy-preserving federated learning scheme with trusted execution environment
- Secure multiparty learning from the aggregation of locally trained models
- A privacy-preserving and non-interactive federated learning scheme for regression training with gradient descent
- Outsourced privacy-preserving decision tree classification service over encrypted data
- Privacy-preserving collaborative deep learning with unreliable participants
- A Tutorial on the Simulation Proof Technique
- Privacy in deep learning: A survey
- A verifiable and privacy‐preserving multidimensional data aggregation scheme in mobile crowdsensing
- Private aggregation from fewer anonymous messages
- Maliciously secure matrix multiplication with applications to private deep learning
- Private outsourced Bayesian optimization
- Privacy preservation for machine learning training and classification based on homomorphic encryption schemes
- Securely outsourcing neural network inference to the cloud with lightweight techniques
- Fast privacy-preserving text classification based on secure multiparty computation
- Leia: A lightweight cryptographic neural network inference system at the edge
- Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud
- Privacy-preserving collective learning with homomorphic encryption
- Fast secure matrix multiplications over ring-based homomorphic encryption
- Privacy-preserving deep learning based on multiparty secure computation: A survey
- Outsourced privacy-preserving classification service over encrypted data
- PeGraph: A system for privacy-preserving and efficient search over encrypted social graphs
- A new public-key cryptosystem as secure as factoring
- Cryptonn: Training neural networks over encrypted data
- Securing approximate homomorphic encryption using differential privacy
- DVREI: Dynamic verifiable retrieval over encrypted images
- Towards secure and efficient outsourcing of machine learning classification
- Toward verifiable and privacy preserving machine learning prediction
- Efficient constructions for almost-everywhere secure computation
- SecureTrain: An approximation-free and computationally efficient framework for privacy-preserved neural network training
- Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities
- Securely and efficiently outsourcing decision tree inference
- Privacy-preserving threshold-based image retrieval in cloud-assisted Internet of Things
- An efficient and privacy-preserving outsourced support vector machine training for internet of medical things
- Swarm-fhe: fully homomorphic encryption-based swarm learning for malicious clients
- Privacy-preserving Byzantine-robust federated learning via blockchain systems
- PVD-FL: A privacy-preserving and verifiable decentralized federated learning framework
- VeriFL: Communication-Efficient and Fast Verifiable Aggregation for Federated Learning
- Verifiable privacy-preserving scheme based on vertical federated random forest
- PCNNCEC: Efficient and Privacy-Preserving Convolutional Neural Network Inference Based on Cloud-Edge-Client Collaboration
- PFLF: Privacy-preserving federated learning framework for edge computing
- Privacy-enhanced federated learning against poisoning adversaries
- Can Foundation Models Help Us Achieve Perfect Secrecy?
- 公钥密码方案构造及安全证明的知识要点和方法论
- Towards the alexnet moment for homomorphic encryption: Hcnn, the first homomorphic cnn on encrypted data with gpus
- Fully homomorphic encryption over the integers
- Homomorphic encryption for arithmetic of approximate numbers
- Achieving efficient and privacy-preserving neural network training and prediction in cloud environments
- VerifyNet: Secure and verifiable federated learning
- Privacy-preserving large language models (PPLLMs)
- Efficient and privacy-preserving similarity query with access control in eHealthcare
- Elsa: Secure aggregation for federated learning with malicious actors
- Somewhat practical fully homomorphic encryption
- Privacy-preserving object detection for medical images with faster R-CNN
- Optimizing secure decision tree inference outsourcing
- Practical secure aggregation for privacy-preserving machine learning
- Cryptflow: Secure tensorflow inference
- ShieldFL: Mitigating model poisoning attacks in privacy-preserving federated learning
- 格困难问题的复杂度分析
- {SWIFT}: Super-fast and robust {Privacy-Preserving} machine learning
- A verifiable privacy-preserving machine learning prediction scheme for edge-enhanced HCPSs
- NPMML: A framework for non-interactive privacy-preserving multi-party machine learning
- Secure and efficient outsourced k-means clustering using fully homomorphic encryption with ciphertext packing technique
- FedCor: Correlation-based active client selection strategy for heterogeneous federated learning
09-11
1745

07-05
5590
