pytorch中view和permute函数改变张量维度方式的不同
说的有点太抽象了。结合代码自己理解一下吧。。
如有错误或意见,欢迎提出。
实验代码:
import torch
import numpy as np
a=np.array([
[
[1,2,3],
[4,5,6]
]
])
unpermuted=torch.tensor(a)
print('unpermuted.size: {}'.format(unpermuted.size()))
print()
permuted=unpermuted.permute(0,2,1)
print('permuted.size: {}'.format(permuted.size()))
print(permuted) #torch.Size([3,1,2])
print()
y=unpermuted.view([1,3,2])
print('y.size: {}'.format(y.size()))
print(y)
实验结果:
unpermuted.size: torch.Size([1, 2, 3])
permuted.size: torch.Size([1, 3, 2])
tensor([[[1, 4],
[2, 5],
[3, 6]]])
y.size: torch.Size([1, 3, 2])
tensor([[[1, 2],
[3, 4],
[5, 6]]])
代码permute(0,2,1)是指将张量第1维度和第二维度换位置。原来维度顺序是(0,1,2),而现在的维度顺序为(0,2,1).
要理解permuted与view两者重组新张量的方式的不同。
permuted()函数是进行的是张量的维度变换,基于原张量的维度进行重组。
view()函数是基于原张量的数据顺序进行重组,将原张量平铺成一个维度后(即[1,2,3,4,5,6] ) ,进行顺序截取,组成size为[1,3,2]的新张量。