## pytorch中view和permute函数改变张量维度方式的不同

pytorch中view和permute函数改变张量维度方式的不同

说的有点太抽象了。结合代码自己理解一下吧。。
如有错误或意见,欢迎提出。

实验代码:

import torch
import numpy as np

a=np.array([
               [
                    [1,2,3],
                    [4,5,6]
               ]
           ])
unpermuted=torch.tensor(a)

print('unpermuted.size: {}'.format(unpermuted.size()))
print()

permuted=unpermuted.permute(0,2,1)
print('permuted.size: {}'.format(permuted.size()))
print(permuted)   #torch.Size([3,1,2])
print()

y=unpermuted.view([1,3,2])
print('y.size: {}'.format(y.size()))
print(y)

实验结果:

unpermuted.size: torch.Size([1, 2, 3])

permuted.size: torch.Size([1, 3, 2])
tensor([[[1, 4],
         [2, 5],
         [3, 6]]])

y.size: torch.Size([1, 3, 2])
tensor([[[1, 2],
         [3, 4],
         [5, 6]]])

代码permute(0,2,1)是指将张量第1维度和第二维度换位置。原来维度顺序是(0,1,2),而现在的维度顺序为(0,2,1).

要理解permuted与view两者重组新张量的方式的不同。

permuted()函数是进行的是张量的维度变换,基于原张量的维度进行重组

view()函数是基于原张量的数据顺序进行重组,将原张量平铺成一个维度后(即[1,2,3,4,5,6] ) ,进行顺序截取,组成size为[1,3,2]的新张量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值