PyTorch中损失函数NLLLoss与CrossEntropyLoss区别

本文通过实验代码展示了PyTorch中CrossEntropyLoss的实际应用,并解释了其等价于Softmax、Log和NLLLoss的组合。通过对比实验结果,深入理解CrossEntropyLoss的计算原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验代码:

import torch
from torch import nn

input=torch.randn(3,3)
print(input)

sm=nn.Softmax(dim=1)

loss1=torch.nn.NLLLoss()
target=torch.tensor([0,2,1])
print(loss1(torch.log(sm(input)),target))

loss2=torch.nn.CrossEntropyLoss()
print(loss2(input,target))

实验结果:

tensor(1.6964)
tensor(1.6964)

结论:
CrossEntropyLoss = softmax + log + NLLLoss

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值