DP表

题目

  1. 最佳买卖股票时机含冷冻期
    给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例:

输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

DP表问题首先分清“状态”和“选择”,然后画出“状态转移框架”,最后写出“状态转移方程”

状态:

0:有股票,非冷冻状态
1:无股票,冷冻状态
2:无股票,非冷冻状态

选择:

买,卖,保持

状态转移框架:


以红线为例,该条状态转移的意义为:第i-1天结束时的状态为 “2.无股票,非冷冻“, 第i天结束时,由于 “买” 股票,状态变为 “0.有股票,非冷冻“

状态转移方程

状态0:
DP(i,0) = max( DP(i-1,0) , DP(i-1,2)-prices(i) )

状态1:
DP(i,1) = DP(i-1,0) + prices(i)

状态2:
DP(2) = max( DP(i-1,2) , DP(i-1,1) )

class Solution:
    def maxProfit(self, prices) -> int:
        f=[float("-inf"),float("-inf"),0]
        for i in range(len(prices)):
            f2=[0,0,0]
            f2[0]=max(f[0],f[2]-prices[i])
            f2[1]=f[0]+prices[i]
            f2[2]=max(f[2],f[1])
            f=f2
        return max(f)

随笔

贪心算法:从前向后的算法
动态规划:从后向前的算法,今天的最大收益 = 前若干天的最大收益 + 前若干天向今天转移的代价

### 动态规划中初始化DP的意义和方法 在动态规划算法中,`dp` 的初始化是一个至关重要的环节,因为它直接影响到后续状态转移的正确性和效率。以下是关于 `dp` 初始化的具体意义和方法: #### 初始化的意义 `dp` 的初始值定义了问题的基础条件或边界情况。这些初始值通常是通过分析问题中的最小子结构得出的。例如,在许多经典问题中,当输入规模缩小至零或者某个特定的小值时,可以直接得到结果而无需进一步计算[^2]。 #### 常见的初始化方法 1. **设置为默认值 (如 0 或 ∞)** 对于某些最大化或最小化的问题,默认情况下可以将所有的 `dp[i][j]` 设置为不可能达到的最大/最小值(比如 `-∞` 或者 `+∞`),然后再单独处理那些已知的状态作为起点。这种策略特别适用于路径寻找等问题。 2. **基于实际场景设定初值** 需要仔细考虑实际情况下的约束条件。例如,在背包问题中,通常会把容量为零的情况设为价值也为零,即 `dp[0]=0`,因为没有任何物品放入的情况下总价值自然也是零。 3. **利用递推关系反向推测起始点** 当前状态依赖于之前已经解决过的更简单的情形;因此可以通过观察最终目标与中间过渡阶段之间的联系倒推出合理的起步位置及其对应数值。 4. **特殊案例独立预处理** 存在一个特殊的例子能够被快速判定出来,则可提前对此种情形加以规定从而简化整体流程设计。 #### 示例代码展示 下面给出一个简单的最大连续子数组求和的例子来说明如何初始化 DP : ```python def maxSubArray(nums): n = len(nums) dp = [float('-inf')] * n # Initialize all elements to negative infinity. dp[0] = nums[0] # The first element's maximum sum is itself. for i in range(1, n): # Fill the rest of the table based on previous results. dp[i] = max(dp[i - 1] + nums[i], nums[i]) return max(dp) print(maxSubArray([-2,1,-3,4,-1,2,1,-5,4])) ``` 上述程序片段展示了如何针对给定的一维列构建相应的动态规划解决方案,并且清楚地标明了首个单元格应当取原始数据集中相应索引处的实际值这一事实[^1]。 #### 结论 综上所述,恰当的选择合适的初始参数对于成功实施任何类型的动态规划方案都是必不可少的一部分。只有明确了每一个可能遇到的基本状况之后才能确保整个过程顺利推进下去而不至于偏离预期轨道太远。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值