目标跟踪相关滤波训练检测过程记录

本文深入探讨了KCF(Kernelized Correlation Filters)跟踪算法的训练与检测过程,揭示了循环矩阵、傅里叶变换及核函数在加速算法运行中的应用,通过实例解释了输入输出的形成与响应值的计算,为理解KCF算法提供了清晰路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看了很多相关滤波方面的资料,对训练和检测方面进行总结

训练

首先一开始看的时候一直搞不清楚训练滤波器的时候输入是什么样的,输出的标签是怎么得到的,以及他们的对应关系。看了一篇博客后,都搞清了。附上链接[https://blog.csdn.net/qq_17783559/article/details/82254996]
输入的初始图片经过循环采样所得到的。而输出标签即他们对应的高斯分布值。

这张图说的是检测过程,不过也可以类比到训练过程
从上面这张图可以看出,样本是怎么得到的,以及各个样本的响应值的对应关系。
初始目标移位采样形成的若干样本距离初始样本越近响应值越大,然后把响应值填入采样样本图片目标中心所对应的原始图片的位置中。

输入输出有了,就可以训练出滤波器了。

检测

得到滤波器后,检测的时候再用循环采样的图片一一与滤波器进行相关操作, 得到响应图。找出响应值最大的位置,即最终目标所在位置。

总结一下,KCF中用到的加速方法:

1)检测:使用循环矩阵+傅里叶变化计算响应图,原本O(n^3)的算法只需要O(nlg(n))

2)训练:利用循环矩阵性质,在频域进行训练

3)核回归提速:对于核函数,也可以转化到频域进行训练和检测,大大提高速度

4)特殊核函数进一步加速:对于高斯核,多项式核可以进一步利用循环矩阵计算核函数的循环矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值