深度学习(二)————文本预处理、语言模型、循环神经网络基础

本文深入探讨深度学习中的文本预处理,包括读入、分词、建立字典和转换为索引序列。接着讲解了语言模型的重要性,介绍了n-gram和神经网络语言模型的基本概念。此外,还详细阐述了循环神经网络的基础,如其结构和计算过程,特别是如何用于语言模型预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

文本预处理

语言模型

n-gram语言模型

神经网络语言模型

循环神经网络基础

简介

计算过程


文本预处理

文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:

  1. 读入文本
  2. 分词
  3. 建立字典,将每个词映射到一个唯一的索引(index)
  4. 将文本从词的序列转换为索引的序列,方便输入模型

常用文本预处理python库有Standford NLP 和NLTK

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为T的词的序列w1,w2,…,wT,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

n-gram语言模型

为了解决自由参数数目过多的问题,引入了马尔科夫假设:随意一个词出现的概率只与它前面出现的有限的n个词有关。基于上述假设的统计语言模型被称为N-gram语言模型。

神经网络语言模型

基本的思想其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值