算法思路
这篇文章是发表在ACCV 2020 上的一篇轻量化超分文章,算法的思想很简单,主要提出了一个注意力辅助特征学习模块(Attentive Auxiliary Feature module )。对于这个模块,一方面接收之前所有模块的输出,然后通过一个1*1卷积,将这些输出映射到同一个空间中,接着通过一个通道注意力模块,滤除冗余的信息,另一方面,仅对上一层的输出进行残差学习,最后这两部分的输出加起来得到当前注意力辅助特征学习模块的输出。整个算法网络结构如下图:
网络配置如下表:
实验结果
训练数据集:DIV2K
测试集(在Y通道测试):Set5 , Set14 , B100,Urban100 ,Manga109
评价指标:PSNR,SSIM,LPIPS(一种感知效果度量指标)