Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning

算法思路

这篇文章是发表在ACCV 2020 上的一篇轻量化超分文章,算法的思想很简单,主要提出了一个注意力辅助特征学习模块(Attentive Auxiliary Feature module )。对于这个模块,一方面接收之前所有模块的输出,然后通过一个1*1卷积,将这些输出映射到同一个空间中,接着通过一个通道注意力模块,滤除冗余的信息,另一方面,仅对上一层的输出进行残差学习,最后这两部分的输出加起来得到当前注意力辅助特征学习模块的输出。整个算法网络结构如下图:

网络配置如下表:

实验结果

训练数据集:DIV2K

测试集(在Y通道测试):Set5 , Set14 , B100,Urban100 ,Manga109

评价指标:PSNR,SSIM,LPIPS(一种感知效果度量指标)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值