Pandas数据分析练习3

该博客通过Python的Pandas库进行数据分析,详细介绍了如何分组探索不同大陆的酒类消费情况,包括啤酒、红酒和spirit的平均、中位数及描述性统计值等关键指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

练习3-数据分组

探索酒类消费数据


目录

步骤1 导入必要的库

步骤2 从以下地址导入数据

步骤3 将数据框命名为drinks

步骤4 哪个大陆(continent)平均消耗的啤酒(beer)更多?

步骤5 打印出每个大陆(continent)的红酒消耗(wine_servings)的描述性统计值

步骤6 打印出每个大陆每种酒类别的消耗平均值

步骤7 打印出每个大陆每种酒类别的消耗中位数

步骤8 打印出每个大陆对spirit饮品消耗的平均值,最大值和最小值

代码截图


步骤1 导入必要的库

运行以下代码

#导入Pandas库
import pandas as pd

步骤2 从以下地址导入数据

运行以下代码

#从目标路径导入数据
path3 ='D:/hailong/hailong_download/pandas_exercise/exercise_data/drinks.csv'    #本地对应的'drinks.csv'路径

步骤3 将数据框命名为drinks

运行以下代码

#将数据框命名为drinks
drinks = pd.read_csv(path3)
drinks.head()

输出结果:

步骤4 哪个大陆(continent)平均消耗的啤酒(beer)更多?

运行以下代码


                
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值