【leetcode】274. H 指数解题说明

本文介绍了一种高效求解H指数的方法,通过计数排序改进传统排序加二分搜索的思路,实现O(n)时间复杂度。文中详细解析了算法原理,并给出具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


题目

在这里插入图片描述

一、初始想法

先sort排序,再用二分法查找合适的h值
不过这样就会稳定算法复杂度为堆排序的nlogn

二、计数排序

列出所有引用次数的论文次数,从大到小找到h值。
这回出现一个问题:引用次数可能很大,这样会导致数组过大浪费空间
由H值的定义,引用数一般小于于论文数,可以把过大的引用数降到论文数,这样不会影响H值

代码如下(示例):

class Solution:
    def hIndex(self, citations: List[int]) -> int:
        top = len(citations)            //论文数,同时也是最大引用数
        a = [0]*(top+1)                 //引用数为0到n的篇数
        for i in range(0,top):          //统计引用数
            a[min(citations[i], top)] += 1
        
        h = top                         //h值由大到小
        s = a[h]                        //h值对应的论文数
        while(h>s):                     //应该满足h<=s
            h -= 1
            s += a[h]
        return h
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值