PA-MPJPE、G-MPJPE 和 Per-metre drift 三个指标

1. Procrustes-Aligned Mean Per Joint Position Error (PA-MPJPE)

定义

在消除平移、旋转和缩放影响后,计算预测姿态与真实姿态之间各关节点的平均欧氏距离误差。

计算步骤
  1. Procrustes对齐:通过最小二乘法将预测的姿态(关键点坐标)与真实姿态对齐,仅保留形状差异(消除平移、旋转和缩放的影响)。

  2. 误差计算:对齐后,逐关节计算预测与真实位置之间的欧氏距离。

  3. 取平均:对所有关节的误差取均值,得到 PA-MPJPE。

应用场景
  • 姿态估计:评估模型对人体/物体姿态形状的预测能力,忽略全局位置和方向的影响。

  • 动作识别:判断姿态本身的相似性,排除场景中物体位置变化的干扰。

特点
  • 关注姿态的形状准确性,而非全局位置。

  • 适用于需要精确姿态对齐的任务(如动作捕捉、动画生成)。

2. Global Mean Per Joint Position Error (G-MPJPE)

定义

在全局坐标系下(未经对齐),直接计算预测姿态与真实姿态各关节点的平均欧氏距离误差。

计算步骤
  1. 直接比较:无需对齐,直接在原始坐标系中计算每个关节的预测值与真实值的欧氏距离。

  2. 取平均:对所有关节的误差取均值。

应用场景
  • 定位与跟踪:评估模型在全局坐标系下的绝对位置精度(如机器人导航、增强现实)。

  • 运动分析:需要同时考虑姿态形状和全局位置的场景。

特点
  • 包含全局位置和方向误差,反映真实世界中的绝对精度。

  • 对传感器标定误差或坐标系偏移敏感。

3. Per-Metre Drift (跟踪漂移)

定义

在连续运动过程中,系统每移动1米,累积的位置误差增长量(通常以米/米或百分比表示)。

计算方式
  1. 轨迹分段:将运动轨迹按每1米划分区间。

  2. 局部误差计算:在每个区间内,计算起点到终点的位置误差(如起点对齐后的终点偏差)。

  3. 平均漂移:所有区间的误差均值即为 Per-metre drift。

应用场景
  • SLAM系统:评估视觉/激光SLAM在长距离运动中的稳定性。

  • 动作捕捉:分析长时间序列下姿态估计的累积误差。

特点
  • 反映系统的长期稳定性和抗漂移能力。

  • 高漂移值表明系统易受累计误差影响(如IMU积分误差、视觉特征丢失)。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值