1. Procrustes-Aligned Mean Per Joint Position Error (PA-MPJPE)
定义
在消除平移、旋转和缩放影响后,计算预测姿态与真实姿态之间各关节点的平均欧氏距离误差。
计算步骤
-
Procrustes对齐:通过最小二乘法将预测的姿态(关键点坐标)与真实姿态对齐,仅保留形状差异(消除平移、旋转和缩放的影响)。
-
误差计算:对齐后,逐关节计算预测与真实位置之间的欧氏距离。
-
取平均:对所有关节的误差取均值,得到 PA-MPJPE。
应用场景
-
姿态估计:评估模型对人体/物体姿态形状的预测能力,忽略全局位置和方向的影响。
-
动作识别:判断姿态本身的相似性,排除场景中物体位置变化的干扰。
特点
-
关注姿态的形状准确性,而非全局位置。
-
适用于需要精确姿态对齐的任务(如动作捕捉、动画生成)。
2. Global Mean Per Joint Position Error (G-MPJPE)
定义
在全局坐标系下(未经对齐),直接计算预测姿态与真实姿态各关节点的平均欧氏距离误差。
计算步骤
-
直接比较:无需对齐,直接在原始坐标系中计算每个关节的预测值与真实值的欧氏距离。
-
取平均:对所有关节的误差取均值。
应用场景
-
定位与跟踪:评估模型在全局坐标系下的绝对位置精度(如机器人导航、增强现实)。
-
运动分析:需要同时考虑姿态形状和全局位置的场景。
特点
-
包含全局位置和方向误差,反映真实世界中的绝对精度。
-
对传感器标定误差或坐标系偏移敏感。
3. Per-Metre Drift (跟踪漂移)
定义
在连续运动过程中,系统每移动1米,累积的位置误差增长量(通常以米/米或百分比表示)。
计算方式
-
轨迹分段:将运动轨迹按每1米划分区间。
-
局部误差计算:在每个区间内,计算起点到终点的位置误差(如起点对齐后的终点偏差)。
-
平均漂移:所有区间的误差均值即为 Per-metre drift。
应用场景
-
SLAM系统:评估视觉/激光SLAM在长距离运动中的稳定性。
-
动作捕捉:分析长时间序列下姿态估计的累积误差。
特点
-
反映系统的长期稳定性和抗漂移能力。
-
高漂移值表明系统易受累计误差影响(如IMU积分误差、视觉特征丢失)。